摘要铝合金激光焊接由于具有能量密度高、热输入小、焊接效率高以及易于实现自动化等优势,在航空航天和机械制造等领域中有着广阔的发展前景。本文采用YLS-10000型光纤激光器对6mm厚度铝合金板进行激光焊接,利用光学显微镜、X射线衍射仪、扫描电子显微镜、维氏显微硬度计等分析测试手段,研究了铝合金激光焊接的显微组织、力学性能及焊接参数对焊缝成形和接头组织与性能的影响。87885
结果表明:选择合理的工艺参数可以在不开坡口的情况下完全焊透6mm的对接铝合金板;利用表面处理、选择合理的焊接参数可以极大地减少焊接缺陷的发生;焊缝周围硬度分布,从母材到焊缝依次降低;焊缝拉伸强度低于母材,断裂均在焊缝处发生;使用扫描电镜观察其断口形貌,分布着大量形状不规则且大小不一的韧窝,表明焊缝塑性较差。
毕业论文关键词 激光焊接 6061铝合金 力学性能 微观组织
毕业设计说明书外文摘要
Title Experimental research on laser welding process of light alloy with robot
Abstract Laser welding aluminum due to its high energy density, small heat input welding, high efficiency and ease of automation and other advantages, has broad prospects for development in the aerospace and machinery manufacturing and other fields。
This paper mainly discusses optical optical fiber laser welding experiment of 6061 aluminum with YLS-10000-type fiber laser。 Using optical microscopy, X-ray diffraction, scanning electron microscopy, micro Vickers hardness tester and other analytical testing methods to study the microstructure of aluminum laser welding, mechanical properties and the influences of welding parameters to weld joint microstructure and properties。源-于,优Y尔O论U文.网wwW.youeRw.com 原文+QQ75201,8766
The results show that: choose reasonable parameters can be fully penetrated butt 6mm aluminum alloy sheet in the case without groove。 The use of surface treatment and a reasonable choice of welding parameters can greatly reduce the incidence of welding defects。 Hardness in descending order from the base material to the weld。 Weld tensile strength is lower than the base metal, and the fracture all occurred in the weld。 Using scanning electron microscopy see the fracture morphology, distribution of a large number of irregularly shaped dimple, indicating poor weld plastic。
Keywords laser welding mechanical properties microstructure
目次
1 绪论 1
1。1 选题背景 1
1。2 铝合金的焊接技术现状 1
1。3 激光焊接的技术现状 3
1。4 研究内容和意义 5
2 试验材料、设备和方法 6
2。1 试验材料 6
2。2 焊接设备 6
2。2。1 YLS-10000型光纤激光器系统 6
2。2。2 机器人系统 7
2。2。3 YW52焊接头 8
2。3 试验方法 9
2。3。1 焊接试验方法 9
2。3。2 组织与性能测试方法 9
3 6061铝合金激光焊接试验 10
3。1 焊接参数的设计与选择