摘要硼掺杂金刚石薄膜具有电化学电势窗口宽,背景电流低等优异的电化学性能,非常适用于电极运用。本文采用热丝化学气相沉积法(HFCVD),以三甲基硼为硼源,在Si(110)基片上获得了不同掺硼量的纳米金刚石薄膜。并通过SEM、Raman光谱、XRD等手段对其表面形貌与微观结构进行表征,探讨了掺硼量对于薄膜质量的影响。通过循环伏安法和线性扫描伏安法对其电化学性能进行研究。67470

研究表明,随着掺硼量的增大薄膜质量下降,金刚石纳米晶粒长大为微晶,出现(111)面择优生长,金刚石拉曼特征峰向低频偏移增大,并且在500和1220cm-1出现两个硼掺杂相关的特征峰。所制得的薄膜电极具有化学电势窗口宽,背景电流小等优异的电化学性能,且电极在K3Fe(CN)6溶液中有良好的稳定性和可逆性。

毕业论文关键词  金刚石薄膜  硼掺杂  热丝化学气相沉积  微观结构  电化学性能

毕业设计说明书(论文)外文摘要

Title  Hot filament chemical vapor deposit boron-doped diamond films                                                  

Abstract

Boron-doped diamond film has excellent electrochemical properties with wide electrochemical potential window, low background current, and is an ideal electrode material. In this paper, using trimethyl boron as boron source, boron-doped nano-diamond films with varying amounts of B/C were prepared on Si (110) substrates by hot filament chemical vapor deposition (HFCVD), And SEM, Raman spectroscopy, XRD and other means were used to research its surface morphology and microstructure, and the impacts with different B/C for the quality of the film were discussed. Its electrochemical properties were studied by cyclic voltammetry and linear sweep voltammetry. 

    Studies show that, with the increasing amount of boron dopping, the quality of the films decreases, diamond nano-crystallites grows into microcrystalline and appears (111) preferred orientation. The diamond peak is shifted to lower frequency increases and two peaks associated boron-doped were found at 500 and 1220cm -1. The obtained film electrode has excellent electrochemical properties with wide chemical potential window, low background current, good stability and reversibility in K3Fe (CN) 6 solution. 

Keywords  diamond film  boron-doped  HFCVD  microstructure electrochemical properties 

目   次

1  绪论  1

2  实验  10

2.1 硼掺杂金刚石薄膜的制备 10

2.2 SEM表面形貌表征  12

2.3 Raman光谱测试  12

2.4 XRD衍射分析  13

2.5 电化学性能测试  13

3  结果与讨论  15

3.1 硼掺杂金刚石薄膜表面形貌  15

3.2 硼掺杂金刚石薄膜微观结构  17

3.3 硼掺杂金刚石薄膜电化学性能  19

结论  23

致谢  24

参考文献 25

1 绪论

1.1 引言

能源、材料、信息科学是新科技的先导和支柱。作为特殊形态材料的固体功能薄膜材料,已在新型高硬涂层道具、光电子学、纳米电子学、磁电子学、微电子学等高新技术领域有着十分广泛的应用。1797年,英国化学家Smithson Tennant 证明了金刚石是由碳组成的,从此人们便开始了人工制造金刚石研究。时至今日,人工制造的金刚石薄膜凭借其优异的力学、热学、电学和光学等特性成为世界各国研发的最热门材料之一。被誉为21世纪的新型功能材料[1]。

上一篇:Al含量对单相γ-TiAl合金组织和室温性能的影响
下一篇:生物质复合材料制备的再生技术研究

非晶TiO2/石墨烯复合纳米材料用于电化学储能

金属有机骨架的氧化锌纳...

退火时间对La0.85Mg0.15Ni2....

气相生长纳米炭纤维的研究进展【4810字】

冷却方式对La0.85Mg0.15Ni2....

钛基复合材料镀镍工艺研究

AZ91D镁合金化学镀镍Ni-P和耐腐蚀性能研究

LiMn1-xFexPO4正极材料合成及充放电性能研究

网络语言“XX体”研究

麦秸秆还田和沼液灌溉对...

互联网教育”变革路径研究进展【7972字】

老年2型糖尿病患者运动疗...

ASP.net+sqlserver企业设备管理系统设计与开发

张洁小说《无字》中的女性意识

新課改下小學语文洧效阅...

我国风险投资的发展现状问题及对策分析

安康汉江网讯