摘要通过真空电弧炉制备了Ni50Mn37In13哈斯勒合金,再通过甩带处理,最后对其高能球磨制成合金粉末。利用能谱仪(EDS)、X射线衍射仪(XRD) 、差示扫描量热仪器(DSC)对合金试样的成分组成、相结构、马氏体转变进行了研究,阐明了球磨及退火温度对Ni-Mn-In合金相变的影响规律。67473
研究结果表明:
(1)、确定球磨后样品成分为Ni49.21Mn37.69In13.10。甩带后的样品结构为7M调制马氏体结构;高能球磨后的样品会发生结构转变,转变为面心四方(fct)结构;经过退火后,样品的结构变为5M调制马氏体和Heusler母相的混合组织。
(2)、球磨样品退火后的相组成中的5M调制马氏体相含量随着退火温度的升高而升高。
(3)、退火温度越高,晶粒尺寸越大,则相变温度越高,抑制球磨退火后的样品粉末发生马氏体相变。
毕业论文关键词:磁控形状记忆合金;Ni-Mn-In合金;马氏体相变;微观结构
毕业设计说明书(论文)外文摘要
Title Structure and phase transition of ball-milled Ni-Mn-In Heusler alloy powders
Abstract
Ni50Mn37In13 Heusler alloys were melting by vacuum arc furnace. Then use the meil-spinning technique to get the ribbons, and alloy powders were prepared by vibration ball-milling technique. The composition, phase structure and transformation of martensitic alloys were studied with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and differential scanning calorimetry calorimeter (DSC). The influence of ball milling and annealing temperature on phase transformation are illuminated.
The results show that:
1 The composition of the ball milled powder is Ni49.21Mn37.69In13.10. The ribbons Ni49.21Mn37.69In13.11 alloy can be indexed as single 7M martensite phase .The vibration ball milled powders can be indexed as a disordered face-centered-tetragonal (fct) structure.And the powders can be indexed as mixed phase of 5M tetragonal martensite phase and Heusler austenite phase after annealing.
2 With the increase of annealing temperature, 5M tetragonal martensite content increased.
3 With the increase of annealing temperature, there was bigger grain size,and there was higher martensitic transition temperature.
Keywords:Magnetic shape memory alloys;Ni-Mn-In alloys;Martensitic transformation; Microstructure
目 录
1 引言 1
1.1 磁控形状记忆合金的发展概况 1
1.2 新型磁控形状记忆合金Ni-Mn-In的发展概况 2
1.2.1 Heusler合金简介 2
1.2.2 Ni-Mn-In合金的晶体结构及微结构 3
1.2.3 Ni-Mn-In合金的磁场诱发马氏体相变 4
1.2.4 影响Ni-Mn-In磁控形状记忆合金基本物理参数的主要因素 5
1.3 球磨Ni-Mn-In合金 6
1.3.1 球磨工艺 7
1.3.2 高能球磨 7
1.3.3 行星式球磨