摘要材料微观结构决定材料的宏观性质,而相变,特别是金属材料中的固态相变,正是材料原子层面上微观结构的变化。在这里我们在对Meyer-Entel势测试的基础上,采用分子动力学模拟方法对铁碳纳米线由温度变化所引发的相变行为进行了研究。对单个原子晶体结构的测定,我们选用了近邻原子探测法(CNA)。结合原子示意图我们测定了碳浓度不同的奥氏体相变和马氏体相变温度,并对相变的形核-长大机理及相变路径进行了分析。71243
毕业论文关键词: 铁碳纳米线;分子动力学模拟;近邻原子探测法;原子嵌入式
Abstract The microstructure of the material determines the macroscopic properties of the material, and the phase transition, especially the solid-solid phase transition in the metallic material, is the changing of the microstructure at the atomic level. In this paper, the lattice type of each atom is analyzed by Common Neighbor Analysis (CNA) using molecular dynamics simulation. Based on the testing of Meyer-Entel interatomic potential, we investigated the temperature changing induced phase transition behavior of iron-carbon nanowire. The Common Neighbor Analysis was used to detect the local atomic structure of each atom. With the help of simulation snapshots, we calculated the austenitic and martensitic temperature of iron-carbon nanowires with different carbon contents. Furthermore, the mechanism of nucleation-growth and the transition pathway was also analyzed.
Key words: Iron-Carbon Nanowires; Molecular Dynamics Simulation;Common Neighbor Analysis;Embedded Atom Method
目录
1 文献综述 1
1.1 研究目的 1
1.2 铁碳合金-钢铁 1
1.3 纳米线 3
1.4 相变 3
1.5 马氏体相变 3
1.6 研究背景 4
2 分子动力学方法 6
2.1分子动力学概述 6
2.2 边界条件 7
2.2.1周期性边界条件 7
2.2.2自由边界条件 8
2.3 原子间作用势 8
2.3.1 原子间嵌入势 (EAM) 8
2.3.2 Meyer-Entel势 8
2.4 原子结构识别 8
3 模拟方法 10
3.1 Meyer-Entel势的测试 10
3.1.1 平衡晶格常数和内聚能的计算 10
3.1.2 体心立方铁体弹模量的计算 10
3.1.3 空位形成能的计算 11
3.1.4 相平衡温度的计算 11
3.2 铁碳体系的模拟 12
3.2.1 铁-碳体系的建模 12
3.2.2 碳原子对BCC铁晶格常数的影响 12
3.2 铁碳纳米线相变的模拟 12
3.3 脚本实例 13
4 模拟结果及讨论 16
4.1 Meyer-Entel势的测试结果及讨论