菜单
  



    Table 2
    Material properties for mould and product
    Carbon Steel (AISI 1050), mould    ABS Polymer, product
    Density, ρ    7860 kg/m3    Density, ρ    1050 kg/m3
    Young’s modulus, E    208 GPa    Young’s modulus, E    2.519 GPa
    Poisson’s ratio, ν    0.297    Poisson’s ratio, ν    0.4
    Yield strength, SY    365.4 MPa    Yield strength, SY    65 MPa
    Tensile strength, SUTS    636 MPa    Thermal expansion, α    65 × 10−6 K−1
    Thermal expansion, α    11.65 × 10−6 K−1    Conductivity, k    0.135 W/(m K)
    Conductivity, k    49.4 W/(m K)    Specific heat, c    1250 J/(kg K)
    Specific heat, c    477 J/(kg K)
    S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259–267    263

    the products. Fig. 8 shows nodes selected for plotting time
    response graphs.
    Figs. 9–17 show temperature distribution curves for dif-
    ferent nodes as indicated in Fig. 8.
    From   the   temperature   distribution   graphs   plotted   in
    Figs. 9–17, it is clear that every node selected for the graph
    plotted experiencing increased in temperature, i.e. from the
    ambient  temperature  to  a  certain  temperature  higher  than
    the ambient temperature and then remained constant at this
    temperature for a certain period of time. This increase in tem-
     
    Fig. 6. Loaded model for analysis of product.

    contour plots of thermal or heat distribution at different time
    intervals in one complete cycle of plastic injection molding.
    For the 2D analysis of the mould, time response graphs
    are plotted to analyze the effect of thermal residual stress on
     
    perature was caused by the injection of molten plastic into
    the cavity of the product.
    After  a  certain  period  of  time,  the  temperature  is  then
    further  increased  to  achieve  the  highest  temperature  and
    remained  constant  at  that  temperature.  Increase  in  temper-
    ature was due to packing stages that involved high pressure,
    Fig. 7. Contour plots of heat distribution at different time intervals.
    264    S.H. Tang et al. / Journal of Materials Processing Technology 171 (2006) 259–267
    Fig. 11. Temperature distribution graph for Node 302.
    Fig. 8. Selected nodals near product region for time response graph plots.

    Fig. 12. Temperature distribution graph for Node 290.

    which caused the temperature to increase. This temperature
    remains constant until the cooling stage starts, which causes
    reduction in mould temperature to a lower value and remains
    at this value. The graphs plotted were not smooth due to the
    absence  of  function  of  inputting  filling  rate  of  the  molten
     
    Fig. 9. Temperature distribution graph for Node 284.
    Fig. 10. Temperature distribution graph for Node 213.
     
    plastic as well as the cooling rate of the coolant. The graphs
    plotted only show maximum value of temperature that can
    be achieved in the cycle.
    The most critical stage in the thermal residual stress anal-
    ysis is during the cooling stage. This is because the cooling
    Fig. 13. Temperature distribution graph for Node 278.
  1. 上一篇:塑料注塑模具并行设计英文文献和翻译
  2. 下一篇:注塑模具钢研磨和抛光工序英文文献和翻译
  1. 汽车内燃机连杆载荷和应...

  2. 审计的优化管理英文文献和中文翻译

  3. FPGA的全景拼接相机的优化...

  4. 气味源定位的有限时间粒...

  5. PLC仿真的虚拟工厂英文文献和中文翻译

  6. ZigBee-RFID混合网络的节电英文文献和中文翻译

  7. PLC可编程控制器的介绍英文文献和中文翻译

  8. 高警觉工作人群的元情绪...

  9. 现代简约美式风格在室内家装中的运用

  10. NFC协议物理层的软件实现+文献综述

  11. C++最短路径算法研究和程序设计

  12. 上市公司股权结构对经营绩效的影响研究

  13. 江苏省某高中学生体质现状的调查研究

  14. 中国传统元素在游戏角色...

  15. 浅析中国古代宗法制度

  16. 巴金《激流三部曲》高觉新的悲剧命运

  17. g-C3N4光催化剂的制备和光催化性能研究

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回