The great advantage of the explicit finite element code is that the simulation model of numerous finite elements can be handled, while the disadvantage is the reduced accuracy due to explicit formulation itself. The disad-vantage, however, can be resolved practically by the adoption of fine mesh size  and proper time increment. Even conditionally stable, the explicit code needs low computer memory then implicit scheme and numerical stability may be effectively achieved when weight con-stants and time step size will be properly estimated. Review of literature Endo et al. (2002) carried out a series of crush tests using scale models of the buffer bow. The test results were compared with those obtained by FEA simulation and a simple analysis. Elasto-plastic finite -element analysis was carried out by using FEA program LSDYNA for the cases tested. Naar et al. (2002) com-pared the resistance with damage of various types of double bottom structures in a stranding event. The ship bottom is loaded with a conical indenter with a rounded tip, which is forced laterally into the structures in differ-ent positions. The aim was to compare resistance forces, energy absorption and penetration with fracture for four different structures. Wang et al. (2002) reviewed the state-of-the-art research on collision and grounding. They focuses on the three issues that a standard for design against accidents needs to address: definition of accident scenarios, evaluation approaches, and accep-tance criteria. McDermott et al. (1974) studied the be-haviour of a longitudinally framed oil tanker structure during a minor collision in which the cargo tank re-mains intact, a plastic analysis procedure, based partly on model tests and inspections of collision damage, was developed and applied to a limited number of idealized ship collisions. Kinkead and Mech (1979) studied colli-sions of a severity sufficient to cause spillage of liquid cargoes, they attempted to extend the classical statisti-cally based analysis of Minorsky to the problem of a liquefied natural gas carrier being rammed by a range of conventional ships, that could occur in the confined waters of approach to harbour where community hazard enters the risk scenario. Pedersen et al. (1993) presented a basis for the estimation of collision forces between conventional merchant vessels and large volume off-shore structures in the form of bridges crossing  interna-tional shipping routes and gravity-supported offshore installations. Daidola (1995) reviewed the nature of collision and grounding and identified analysis tech-niques from the literature. Glykas et al. (2001) discussed three failure criteria during a tanker collision takes place. Brown (2002) examined the influence of collision scenario random variables on the extent of predicted damage in ship collisions. Hansen and Simonsen (2002) developed the software providing a toolbox for a multi-tude of analyses related to collision and grounding acci-dents. Lehmann and Peschmann (2002) used the results of large–scale collision experiment to validate numeri-cal calculations of the collision process. Naar et al. [0] compared the resistance against damage of various types of double bottom structures in a stranding casu-alty. The comparative analyses were made by use of a commercial, explicit finite element program. Otto et al. (2002) computed the annual risk of collision and grounding for an example Ro-Ro passenger ferry. Taag (2002) investigated the development of this damage extent distribution based on three independent method-ologies; actual casualty measurements, world fleet bow height statistics, and collision simulation modelling. Paper by Tikka et al. (2002) illustrated an analysis of a large number of hypothetical, but realistic, grounding scenarios, and the application of an approach to study the effect of design modifications on the oil outflow performance. Zhu et al. (2002) considered general sta-tistics of ship grounding incidents and the damage ex-tent distributions for Ro–Ro ships presented from the results of a comprehensive damage data survey con-ducted using Lloyd’s Register’s damage database.
上一篇:舰船玻璃钢夹芯板缺陷和损伤的影响英文文献和中文翻译
下一篇:现金池英文文献和中文翻译

船舶运动仿真系统英文文献和中文翻译

船舶建造规格书英文文献和中文翻译

船舶自动化系统英文文献和中文翻译

船舶系泊定位系统英文文献和中文翻译

北大西洋航行船舶的波高...

船舶设计中的消防安全性...

船舶与海洋结构物水动力...

网络语言“XX体”研究

我国风险投资的发展现状问题及对策分析

安康汉江网讯

ASP.net+sqlserver企业设备管理系统设计与开发

LiMn1-xFexPO4正极材料合成及充放电性能研究

张洁小说《无字》中的女性意识

互联网教育”变革路径研究进展【7972字】

新課改下小學语文洧效阅...

麦秸秆还田和沼液灌溉对...

老年2型糖尿病患者运动疗...