Fig。 7。 Fitness plot of RSM metamodel with 36 design  points。

Fig。 8。  Fitness plot of RBF metamodel with 36 experiments。

Fig。 9。 History plot of optimization process using direct GA optimization  method。

optimum point is not always guaranteed。 The evidence is that the value of objective function of GA method is 2。93 meanwhile this value continues to be improved when applying gradient-based optimization method subsequently (2。93 compared to 2。72, Table 2)。 The starting point for searching the optimum point of gradient-based optimization method is the optimum point obtained by GA。

When we applied the direct gradient-based optimization method using sequential quadratic programming, the conver- gence is reached very fast, just after 50 iterations。 However, the optimum result is worse than other methods。 The evidence is that the value of the warpage is 3。54 mm。 The history plot of the optimization process using direct gradient-based approach is shown in Fig。 10。 Trying other starting points may improve the final optimum result but the simulation cost will increase。 The efficiency of the optimization method depends on the number of simulations and on the fidelity of optimum point。

Table 3 compares the number of simulations of the optimization methods that have been used。 Direct GA optimization meth- od requires a lot of simulations compared to other methods。 The combination of coarse GA and gradient-based fine search has a moderate number of simulations gives the best optimum solution。 Gradient-based methods require less iteration, but they are easy being trapped in a local minimum。 RBF and ANN metamodel-based optimization methods reduce the number of simulations; however, the error at the optimization point is high。 We found that using rough GA search followed by a gra- dient-based optimization technique is a good choice that ensures an expected optimum point for the high nonlinear re- sponse problem。

4。2。 Case study 2: low nonlinear response   problem

This case study investigates the proposed optimization methods when the behavior of objective functions is low nonlin- ear。 Multi-objective optimization is considered instead of single objective optimization。 Warpage, cooling time, and residual stress were minimized  simultaneously。

Fig。 10。  History plot of optimization process using direct gradient-based method。

Table 3

The number of simulations of different optimization   method。

Optimization methods GA (direct) Gradient-based GA then gradient RBF (metamodel) NN (metamodel)

Number  of  simulations (runs) 200 (predefined) 50 (approximate) 123a  (approximate)

60 (predefined) 60 (predefined)

a    100 runs for  GA

Fig。 11。  A  deep tray  made by  polypropylene  material。

The molded part is a deep tray with 2。5 mm thickness as shown in Fig。 11。 Due to the geometrical of the molded part, the response of the warpage is a low nonlinear function。 Molded material is polypropylene, and mold material is P20 steel。 Injec- tion molding machine is a default machine selected from the database of injection molding software。 Five design variables and their ranges are shown in Table  4。

The optimization problem is stated as   follows:

上一篇:刷电镀的更新英文文献和中文翻译
下一篇:汽车挡泥板注塑成型中能源效率英文文献和中文翻译

数字通信技术在塑料挤出...

快速成型制造技术英文文献和中文翻译

注射成型薄壁注塑翘曲英文文献和中文翻译

注射成型的微悬臂梁结构英文文献和中文翻译

汽车挡泥板注塑成型中能...

Moldflow软件在复杂的塑料外...

塑料盖镜片残余应力的消...

老年2型糖尿病患者运动疗...

ASP.net+sqlserver企业设备管理系统设计与开发

互联网教育”变革路径研究进展【7972字】

安康汉江网讯

LiMn1-xFexPO4正极材料合成及充放电性能研究

新課改下小學语文洧效阅...

麦秸秆还田和沼液灌溉对...

张洁小说《无字》中的女性意识

网络语言“XX体”研究

我国风险投资的发展现状问题及对策分析