菜单
  

    in Fig. 2.
    The stakeholder defines the simulation objectives and the relevant
    performance indicators. Based on this information, the checklist
    framework can be used to identify the entities and variables to be used
    in the simulation and thus estimate the initial modeling complexity.
    The initial modeling complexity should be the lowest possible
    complexity that satisfies the simulation objectives in terms of
    performance indicators. The quantification of validity of the initial/
    minimum required modeling complexity is achieved by specifying a
    range for error tolerance, as a model deviation of the real world.
    The error in a verifiedmodel is the sumof: (i) abstraction error, (ii)
    input data error, and (iii) numerical errors. Here, only the former two
    are discussed while it is assumed that by decreasing the discretization
    step the numerical errors can be controlled. The first error is due to the
    modeling abstractions, i.e. using an incomplete model of a physical
    system, and the second is due to uncertainties in the parameters
    themselves. Sometimes the distinction between the two is not clear.
    Parameter uncertainty can be quantified and therefore the corre-
    sponding uncertainty of the model output as well. This uncertainty of
    the output is known as predictive uncertainty.
    The modeling uncertainty is not easily quantifiable and therefore
    its influence can be considered as a modeling bias. As illustrated in
    Fig. 3, with the increase of modeling complexity the predictive
    uncertainty rises as there are more parameters to consider. On the
    other hand, the models approach reality and the bias decreases. The
    curve that defines predictive uncertainty depends on how much ofFig. 2. Schematic representation of a checklist rationale [55]: 1. There must be a total
    tracking of items in the requirements to the conceptual model. 2. There should be a
    specific simulation element for every item (parameter, attribute, entity, task, state,
    etc.). 3. As far as possible, there should be “real world” counterparts for every
    simulation element. 4. The simulation elements should correspond to standard and
    widely accepted decomposition paradigms to facilitate acceptance of the conceptual
    model and effective interaction (including reuse of algorithms and other simulation
    components) with other simulation endeavors. 5. Simulation elements required for
    computational considerations that fail tomeet any of the previously stated items should
    be used only when absolutely essential. 6. There should be no extraneous simulation
    elements.关键词:
    建筑系统性能仿真,暖通空调性能仿真,集成建筑性能模拟,暖通空调技术仿真,建模和仿真方法
    文摘本文概述了空调(HVAC)建模系统的加热、通风以及暖通空调系统的设计和分析。介绍了每个分类并分别举出实例切合实际的说明了暖通空调建模的性能。本文总结了一般情况下用于建模(i)暖通空调组件,(ii)暖通空调的方法。为了便于控制(iii)暖通空调系统,文章给出解决方案即针对目标空调系统选择建模。总而言之,一个人应该针对要仿真的目标选择一种暖通建模方法。
     ©2009爱思唯尔帐面价值保留所有权利。
  1. 上一篇:五轴端铣英文文献和中文翻译
  2. 下一篇:数字式EL定位器英文文献和中文翻译
  1. 新能源空调系统设计英文文献和中文翻译

  2. 机械设计制造及其自动化英文文献和中文翻译

  3. 超市空调系统英文文献和中文翻译

  4. 船舶自动化系统英文文献和中文翻译

  5. PLC自动化制造系统英文文献和中文翻译

  6. 南京某软件园研发楼空调系统设计

  7. 上海某商业中心暖通空调系统设计开题报告

  8. 江苏省某高中学生体质现状的调查研究

  9. 中国传统元素在游戏角色...

  10. NFC协议物理层的软件实现+文献综述

  11. 现代简约美式风格在室内家装中的运用

  12. C++最短路径算法研究和程序设计

  13. 巴金《激流三部曲》高觉新的悲剧命运

  14. g-C3N4光催化剂的制备和光催化性能研究

  15. 高警觉工作人群的元情绪...

  16. 上市公司股权结构对经营绩效的影响研究

  17. 浅析中国古代宗法制度

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回