10    10   10   10

c3  10    10   10   10,

b  2。8   2。8   2。8   2。8T  ,

b   36   36   36   36T ,

2

b  3   3   3   3T  。

3

(n) 1。2 

n Gmax

0。5

(25)

According  to  the  above  method,  the    simulation

results are shown in Figs。 3−13。 Figures 3−5 describe the output of the fuzzy neural network, Fig。 6 describes    the

where Gmax is the maximum calculated cutoff generation。

5。2 Design steps

Step 1: Initialize a group of random particles (e。g。 group size N, random position, velocity, and initial vector)。

Step 2: Evaluate the fitness value of each particle according to the objection function J and fitness function F as follows:

progress of parameter optimization with the PSO,  where

cx=2。658  1,  cl=0。218  8,  cθ=1。265  8,  α=3。824  5,     ε1=

0。836 0, ε2=0。754 9, k1=2。367 2, and k2=2。622 4。

Figures 7−9 describe the change of system variables using FNNSMC and SMC, the maximum swing angle of FNNSMC is ±0。1 rad, the maximum swing angle  of SMC is ±0。12 rad, the rapidity of FNNSMC than SMC。 Figures 10−13 describe the change curves with 0。5 step disturbance within the 13 s。 It can be seen from Figs。 10−

13, the anti-swing capability of this method is stronger

min

J 1 eT e (26)

2

than conventional sliding mode control and the  method of   Ref。   [10]。   In   the   presence   of   disturbances, the

1

Ffit   J

(27)

maximum swing angle of it is only ±0。1 rad, but the maximum swing angle ±0。13 rad of SMC and is 0。25 rad

Step 3: For each particle, by comparing the inpidual fitness value at present and the best position pbest itself in the past, the best position pbest is updated if the present value is better than the past。

Step 4: For each particle, by comparing the inpidual fitness value and the best position gbest of the group with those in the past, the global best position gbest is updated if the present value is better than the global optimal position。

in Ref。 [10]。

As can be seen from the simulation results, the PSO can search the most excellent value fast in the solution space (the three generations)。 The simulation shows that the proposed control method guarantees anti-swing control and accurate tracking control of trolley when the system model exists uncertainties。 And the sliding function can reach rapidly to the sliding mode surface, which improves the system robustness。

J。 Cent。 South Univ。 (2012) 19: 2774−2781 2779

Fig。 3 Output of first fuzzy neural network: (a)  ~ ;  (b) ~

f1 h1

Fig。    4    Output    of    second    fuzzy    neural    network:  (a)

Fig。 5 Output of third fuzzy neural network: (a)

~

;  (b)  g ;

~ ; (b) g~  ; (c) ~

上一篇:撑开式闸阀设计英文文献和中文翻译
下一篇:护理床及其轮椅装置英文文献和中文翻译

红外光电传感器的智能循...

智能城市物流云计算模型英文文献和中文翻译

情景感知智能汽车英文文献和中文翻译

起重机升降传感器系统英文文献和中文翻译

基于网络的注塑模具智能...

起重机液压系统支腿的智...

电子商务万维网的智能销...

我国风险投资的发展现状问题及对策分析

互联网教育”变革路径研究进展【7972字】

新課改下小學语文洧效阅...

安康汉江网讯

网络语言“XX体”研究

LiMn1-xFexPO4正极材料合成及充放电性能研究

ASP.net+sqlserver企业设备管理系统设计与开发

老年2型糖尿病患者运动疗...

张洁小说《无字》中的女性意识

麦秸秆还田和沼液灌溉对...