摘要:自然界中的蝴蝶种类极其繁多,而经过大量研究发现,蝶翅结构是天然的有序微 纳结构,将各种材料与蝴蝶翅膀进行复合,实现蝶翅结构与材料功能的耦合,具有重 要的研究价值。本文以金裳凤蝶前翅与大蓝闪蝶为原料模板,采用一步碳化法获得碳 基体材料,以高锰酸钾与硫酸钾为沉积溶液,采用溶液沉积法在碳基体表面修饰一层 MnO2,成功地制备了蝶翅微纳结构碳基电极复合材料。
实验采用场发射扫描电镜、X 射线光电子能谱分析等表征技术对蝶翅碳基电极材 料的形貌和成分进行了表征,利用三电极体系对所制备的电极材料进行循环伏安、恒 流充放电、电化学阻抗与循环稳定性能等电化学性能测试。
结果表明,金裳凤蝶的脊/孔结构与大蓝闪蝶的两种脊结构排列有序,具有分级 构造的特点,极大的增加了材料的比表面积,从而能够提高能量密度,这是蝶翅作为 电极材料优于其他材料的原因之一;MnO2 的结构多样性与 Mn 元素多变的化合价态, 使其应用于很多领域,将其附着在蝶翅结构碳的表面,实现了理想结构与功能材料的 完美耦合。两种蝶翅微纳结构碳基电极材料均表现出优异的电化学性能。
综上所述,将蝶翅结构与 MnO2 材料进行复合的实验研究是具有重大意义的,为 高性能超级电容器的制备提供了一种新的手段。
关键词:蝴蝶翅膀;有序微纳结构;碳;二氧化锰;电化学性能
Abstract:There are many kinds of butterflies in nature, and after a lot of research found that the butterfly wing structure is a natural orderly micro/nano structure, the various materials and butterfly wings to the butterfly wing as the matrix, to achieve butterfly wing structure and material function Combined to achieve a win-win situation, with important research value. In this paper, single-step carbonization method was used to treat raw materials. The method of solution deposition was studied by using potassium permanganate and potassium sulfate as the deposition solution. Base electrode composite material.
The morphology and composition of the material were analyzed by field emission scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The electrode materials were characterized by constant current charge-discharge and cyclic voltammetry Electrochemical impedance spectroscopy, cyclic electrochemical impedance spectroscopy, electrochemical impedance spectroscopy, electrochemical impedance spectroscopy.
The results show that the ridge / pore structure of the gold chun butterfly and the two kinds of ridge structures of the large blue butterfly are arranged in order, which greatly increase the specific surface area of the material and improve the energy density. This is the butterfly wing as the electrode material Which is superior to other materials. The structural persity of MnO2 and the valence of Mn element persity are applied to many fields, which are attached to the surface of the butterfly fin to achieve the perfect coupling between the ideal structure and the functional material. The two kinds of butterfly fins are shown to exhibit excellent electrochemical performance.
In summary, it is of great significance to study the composite structure of the butterfly wing structure with the MnO2 material, which provides a new method for the preparation of high performance supercapacitor.
Keywords:Butterfly wings, ordered micro/nanostructures, manganese dioxide, electrode materials, electrochemical properties
目 录
第一章 绪 论 1
1.1 引言 1
1.2 超级电容器简介 1
1.2.1 超级电容器的特点