摘要:本文使用葡萄糖作为碳源,在葡萄糖溶液中加入氟硼酸铵,使用氯化铁作为催化剂,选用PVP作为表面活化剂,在180℃的温度下水热反应24h得到球形碳,再使用管式炉在高温下进行碳化合成出氟/硼掺杂的石墨球,测试其电化学性能。通过改变添加剂的种类和控制反应条件(水热温度,水热反应时间等)得到高性能的超级电容器电极材料。结果表明(1)改变表面活性剂PVP的用量可有效控制球碳离子的粒径大小。(2)在加入了氯化钾的体系中葡萄糖和氯化钾比例为1:1时具有最高的比电容量。其在电流密度为0.25A/g时比电容量为130.275F/g,球碳粒径约为10μm。(3)在葡萄糖和氟硼酸铵比例为1:2时所得到的球碳具有最大的电容量,其在电流密度为0.25A/g时比电容量为492.875F/g,并且在加大电流密度之后也能保持很好的比电容量,其作为超级电容器的电极材料有很大的潜力。68810
毕业论文关键词: 球状石墨;水热法;纳米材料;氟/硼掺杂;电化学性能
Preparation and properties of spherical graphite micro nano materials
Abstract: in this paper, using glucose as carbon source, add fluoboric acid ammonium in glucose solution.Using ferric chloride as catalyst, and PVP as surfactant, when temperature of 180 ℃ in 24 h to get the spherical carbon.Using the tubular furnace at high temperature to synthesize fluorine/boron carbide doped graphite ball, testing its electrochemical performance.Changing the type of additive and controlling the reaction conditions (water temperature, water heat reaction time, etc.) to obtained high performance supercapacitor electrode materials. The results show that (1)the dosage of the surfactant can effectively control the size of the spherical carbon ions. (2) When the ratio of glucose to potassium chloride was 1:1, the highest specific capacity was obtained.It has current density of 0.25 A/g with capacity of 130.275 F/g, which is about 10 μm. (3) when glucose and fluoboric acid ammonium ratio of 1:2 the resulting carbon ball has the largest electric capacity, When current density is 0.25 A/g , the electricity capacity is 492.875 F/g, and after increasing current density can maintain good capacitance, as super capacitor electrode materials has great potential.
Keywords: Spheroidal graphite; hydrothermal method; nanomaterial; fluorine / boron doping; electrochemical performance
目录
第一章 绪论 6
1.1课题背景 6
1.2球形活性碳型材料概述 6
1.2.1碳球的制备 6
1.2.1.1水热法 7
1.2.1.2气相沉积法 7
1.2.1.3高温热解法 7
1.2.2石墨球的制备 8
1.2.2.1以蔗糖为前体,NaOH活化制备石墨球 8
1.2.2.2以风化煤系腐殖酸为前体,KOH活化制备石墨球 8
1.2.2.3.以梭甲基纤维素(CMC)为前体,通过CO2活化制备石墨球 8
1.2.2.4以线性酚醛树脂为原料,制备酚醛树脂基石墨球 9
1.3超级电容器概述 9
1.4氮掺杂碳基超级电容器电极材料 9
1.5其他纳米碳超级电容器电极材料 10
1.6文献总结 10