摘要存在于大气层以外的目标一般被称作深空目标。由于飞行试验受诸多条件限制,很难取得目标足够的样本数据,因此对深空目标的运动学仿真能够为我方雷达提供重要信息,有利于我方对目标导弹的拦截和跟踪。由于目标中段飞行时间占整个弹道时间较长,并且目标在中段处于几近真空的状态,因此对目标中段的运动学进行仿真尤为重要。
本文主要介绍了了OSG三文渲染在三文仿真中的优势,并依据能量守恒和角动量守恒物理定律,提出了目标中段飞行轨道的递推计算方法,用户设定初始条件,可以通过递推得到整个目标中段飞行轨道。将递推法与经典计算方法进行了比较,从而验证了递推法的实时性和精度,为实时运动学仿真提供了算法保障。23121 毕业论文关键词 深空目标 OSG 递推法 运动学仿真
Title The Similator Software Development Of The Target In Deep Space Flying In The Middle Of The Track
Abstract
Targets exist outside the atmosphere are generally referred to deep space targets.It’s difficult to obtain sufficient sample data because flight test is restricted by many conditions. Therefore, the kinematics simulation target of deep space can provide important information for our radar.Conducive to intercept the target missile and tracking.Since the middle of the target flight time accounted for the entire trajectory longer,and is almost in the middle of the target vacuum condition.So the middle of the target kinematics simulation is particularly important.
This paper describes the advantages of using three-dimensional rendering engine of the OSG in the three-dimensional simulation. It proposed a recursive method to calculate orbit, based on conservation of energy and angular momentum conservation laws of physics. The users set the initial conditions of the system,and get the whole middle of the flight path of the target by recurrence. Compared to the classical calculation methods, it verifies the timeliness and accuracy of the recursive method, and provides protection for the real-time kinematics simulation algorithm.
Keywords Target in deep space, OSG, Recursive method, Kinematic
Simulation