本文利用fMRI(功能磁共振成像)数据对静息状态下的大脑的系统功能连接性进行分析和研究,提出了一种分析二组脑信号之间的功能连接性的方法。大部分使用fMRI对静息态的大脑功能连接性的研究采取假设暂时性的静态方法。然而,来自fMRI面向任务的研究和动物生理学的研究中的证据都表明功能连接性在分秒级时间尺度内会显示出动态变化性。此论文采取了层次聚类方法对静息状态下大脑的fMRI信号进行聚类,提取出类中代表信号,再运用小波变换对之进行时频相干性的分析。实验结果证明组内信号的聚类情况非常理想,选取出的信号也具有很强的代表性,程序绘制出的WTC(小波变换相干性)的图像能够很好的表示出组间信号间的相干性,因而对静息态大脑的系统功能连接性的研究提供了一种可行有效的方法。8804
关键词: 功能磁共振成像,功能连接性,层次聚类,小波变换,时频相干性
毕业设计说明书(论文)外文摘要
In this study, I explored the resting-state functional connectivity using fMRI signals, and gave a novel method in analyzing the functional connectivity through computing the coherence between two groups of fMRI signals. Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit dynamic changes within time scales of seconds to minutes. In the present study, Hierarchical Clustering Algorithm was used to group all the fMRI signals into several clusters. And then the typical signals are selected and then performed a time-frequency coherence analysis based on the wavelet transform, in order to investigate the dynamic behavior of resting-state connectivity across the course of a single scan. It has been proved that the clustering results are good and the selected signals are representative, and in this way we provide an effective and convenient method in analyzing the resting-state functional connectivity using fMRI signals.
Keywords: fMRI, functional connectivity, hierarchical clustering, wavelet transform, time-frequency coherence
目录
1 绪论 1
1.1 研究背景及意义 1
1.2 本论文的研究思路及所作主要工作 3