摘要:粒子群优化算法是由Kennedy和Eberharttong观察和研究发现的一种新颖的进化算法。这个算法模拟鸟群觅食的行为,通过鸟互相间的合作使群体达到最优。PSO的优势在于简单且容易实现,同时也非常智能化,非常适合科学的研究以及实际生活中的应用。但由于PSO发展历史并不长,它在实际应用中还存才一部分问题导致优化时并不能达到最优的目的,有时还使优化后的算法还不及优化前的算法。76113
本文针对PSO算法的问题,比如:收敛速度、算法易陷入局部极小点,搜索效率不高等。提出新的改进思想,通过一种分工协作的方法以希望对PSO的缺点部分达到改进的效果。
毕业论文关键词: 粒子群;最优化;智能算法;收敛;稳定性
Research and improvement of particle swarm optimization algorithm
Abstract: particle swarm optimization (PSO) is a novel evolutionary algorithm based on Kennedy and Eberhart。 This algorithm simulates imitate of birds, which through the cooperation of birds to achieve the best algorithm。 The advantage of PSO is simple and easy to implement, but also very intelligent, very suitable for scientific research and practical applications。 However, due to the development of PSO is not a long history, it is still a part of the problem in the practical application of the optimization cannot achieve the purpose of optimization, and sometimes the optimization of the algorithm is not as good as the optimization algorithm。
In this paper, the PSO algorithm has problems, such as: convergence speed, the algorithm is easy to fall into local minima and the search efficiency is not high。 We put forward a new idea of improvement, which through a pision of labor and cooperation in the hope that the shortcomings of the PSO to achieve improved results。
KeyWords: Particle swarm;Optimization;Evolutionary computation;Convergence; Stability
目录
1。绪论 1
1。1 研究背景和意义 1
1。2 常见的智能优化算法 2
1。2。1 蚁群算法 2
1。2。2 萤火虫算法 2
1。2。3 遗传算法 3
1。2。4 粒子群优化算法 3
1。3 本文研究内容 4
1。4 全文安排 4
2。粒子群优化算法 6
2。1 粒子群优化算法的研究现状 6
2。2 基本粒子群优化算法 7
2。3 多目标粒子群优化算法研究现状 8
2。4 几种改进的粒子群优化算法 11
2。5 协同粒子群优化算法 12
3。基于专业化分工的改进策略 15
4。性能测试 17
5。总结与展望 25
致谢 26
参考文献