[摘要计算城市的绿地覆盖率是一项繁琐的工作。高分辨率影像的出现,给这项工作提供了便捷的途径。本文以高分辨率影像为基础,结合道路和水系矢量数据,利用ecognition分类软件完成绿地的提取,并计算出绿地覆盖率。
[关键字绿地覆盖率高分辨率影像影像分类
1。引言
<论文网p>绿化建设是一个城市建设的重要工作,城市绿地覆盖率是衡量一个城市绿化程度的最主要的指标,那么如何来计算一个城市的绿地覆盖率呢?从方法上看,只要能够知道城市范围以及该范围内的绿地面积,绿地覆盖率的结果就可以非常简单地计算出来,问题的关键就在于绿地面积的获取。一般的作法是通过调查人员在实地调绘出绿地的范围,然后在地图上量算出绿地面积。由于计算的范围一般都会非常大,如果所有的绿地都是通过调绘来确定范围,那就需要花费大量的人力和时间,实际的工作中,通常是将城市划分为不同的区域,每个区域再取不同的样点,利用样点数据计算的绿地面积来推算一个区域的绿地面积,最后再推算出整个城市的绿地面积。目前,随着航空遥感技术的发展,高分辨率遥感影像在国内开始得到广泛的应用,而这些影像的出现,也给城市绿地覆盖率计算提供了更为有效而便捷的手段。
2。主要思路
采用高分辨率影像来确定绿地范围,这项工作完全可以在室内完成,无需进行室外的调绘。需要注意的是,绿地覆盖率是一个跟时间密切关联的指标,绿地覆盖率应当是代表某个时间的计算的结果。由于植被的生长周期一般都比较长,绿地覆盖率突变的情况比较小,而完全采用影像来确定绿地,最直接的优点就是提高了计算结果在时间定位上的精度。
从高分辨率影像上提取绿地一般是采用人工提取,也就是作业人员在计算机上,以影像为底图,手工勾绘绿地范围,这种方式的工作量依然很大。本文采用的作法是通过ecognition影像分类软件来完成绿地的提取。ecognition是2004年引入国内的一个影像分类软件,它采用面向对象的分类方法。该软件能方便地融入其他专题地影像信息作为分类知识,同时能够让用户灵活地建立知识的分类模型,简洁高效地完成分类工作。
只单纯采用高分辨率的影像,利用软件来自动提取绿地的效果并不理想,本文的作法还引入了城市的路网和水系数据作为专题信息,用来提高绿地提取的精度。
另外,考虑到城市的范围比较大,并且不同区域的地类分布会有所不同,因此需要将城市划分为不同的区域,每个区域分别进行绿地的提取,最后再汇总计算出总的绿地面积。整个计算的过程如图1所示。
图1计算过程
Fig。1CalculationProcess
3。过程及方法描述
3。1数据准备
3。1。1数据情况
本篇文章所处理的主要数据为高分辨率影像,同时还利用了矢量的GIS数据,具体如下:
广西南宁市QUICKBIRD影像,2002年10月份获取,真彩色产品,包括红。绿。兰三个波段,tiff格式,空间分辨率0。61米。
城市路网和水系的矢量文件,ArcInfo的shape格式文件(如图2)。
图2矢量数据
Fig。2VectorData
本文需要计算图1中所示的外环公路内绿地覆盖率。
3。1。2区域划分
城市区域的划分主要是根据路网。水系。地势等地理要素,在矢量地图上,通过手工来划分,实验区域的划分情况如图3,将外环公路内分为C1。C2。C3。C4。C5。C6。C7等7个区域。
图3工作区域
Fig。3WorkRegions
3。1。3影像配准及数据转换
由于混合了矢量数据和影像数据的处理,为正确和方便地使用这些数据,需要统一数据的地理坐标,为此,采取将影像数据配准到矢量数据的地理坐标下的作法,影像需要根据输入的控制点,进行移动。缩放。旋转等内容的变换,并且不要对影像进行重新的采样和保存。因为需要将整个范围划分为6个区域来处理,影像数据也相应地要分割为6个部分,但影像的分割,不需要用区域的边界来分割,只要用区域的最小外接矩形来分割就可以了,在分类的过程中,利用区域的专题信息,就可以避免数据处理过程中对影像重叠部分的重复计算。
Ecognition的专题图文件是由一个栅格数据文件和一个描述栅格属性的ASCⅡ文件来组成,描述文件的后缀一般为asc,也可以是txt后缀,下面是一个asc文件的样例。
表1asc文件格式
Tab。1ascFileFormat
ID列表示栅格文件中的灰度值,R。G。B表示该灰度值在ecognition软件中显示时所使用的RGB色彩的三个分量,Value。Field1都是扩展的属性字段,用来记录更多的特征。
矢量数据中,需要将划分的区域面以及道路和水系的面数据转换为ecognition软件的专题数据文件格式,这项工作,作者是通过编写专门的程序来实现(具体作法可参考矢量数据转换为栅格数据的相关资料和文献)。
[1][2]下一页