摘 要:生产生活中对于纤维板的需求量随着社会经济的发展而逐年增长,而普通纤维板中大量化学胶黏剂的使用,使其对环境造成较为严重的污染,因此绿色无污染纤维板的开发成为当前纤维板研究领域的热点。本实验主要研究漆酶对小麦秸秆预处理后,压制纤维板的强度与预处理变量之间的关系,以期为无胶纤维板的研制提供理论与实践依据。首先对漆酶预处理工艺的单因子进行了优化,优化条件为:酶量20U/g,时间3h,固液比1:4,pH5。0,温度50℃;进一步进行了SAS响应面优化,优化结果为:酶量15U/g,反应时间2h,固液比1:4,pH5。0,反应温度45℃。在该条件下,研制的纤维板弯曲强度达到6。99MPa,较未优化提高了1。32倍。该实验为漆酶处理制备力学性能优良的自生胶合纤维板提供了理论依据。93178
毕业论文关键词:纤维板,漆酶,小麦秸秆,预处理,弯曲强度
Abstract:With the development of social economy, the demand in production and life for fiberboard is on the increase each year。 However, environmental pollution is more serious because of the extensive use of chemical adhesives in common fiberboard。 As a result, the exploitation of green non-pollution fiberboard becomes the hotspot in the field of fiberboard research。 This experiment is the research on the relationship between performance characteristics of fiberboard and the variates about pretreatment after laccase pretreatment of wheat straws, in order to provide the theory and practice basis for development of green binderless fiberboard。 First process of the laccase treatment is optimized by single factor。 Optimum conditions:enzyme amount 20U/g,reaction time 3h,solid-to-liquid ratio 1:4, pH 5。0, treatment temperature 50℃; further for the SAS response surface optimization, optimization results:enzyme amount 15U/g, reaction time 2h, solid-to-liquid ratio 1:4, pH 5。0, treatment temperature 45℃。 In this condition, the flexural strength of fiber board is respectively reached 6。13MPa, with 1。16 times increase than before optimization。 The research provided the theoretical guidance for production of self-bonding straw fiberboard with excellent performance。源F于K优B尔C论V文N网WwW.youeRw.com 原文+QQ752^018766
Keywords: fiberboard, laccase, wheat straw, pretreatment, flexural strength
目 录
1 前言 6
1。1 我国农业秸秆引发的污染 6
1。2我国人造板现状 7
1。3 无胶人造板的研究进展 7
1。4 漆酶预处理生产无胶纤维板 8
1。5 研究思路 8
2 材料与方法 10
2。1 材料与仪器 10
2。1。1 秸秆 10
2。1。2 试剂 10
2。1。3 溶液 10
2。1。4 仪器设备 10
2。2 实验方案 11
2。2。1 漆酶预处理秸秆的单因素条件研究 11
2。2。2 纤维板响应面优化 13
2。2。3 纤维板热压方法 13
2。2。4 力学强度测定 13
3 结果与分析 14
3。1 不同酶量对纤维板性能的影响 14
3。2 不同时间对纤维板性能的影响