摘要:纤维板因化学胶黏剂的使用,导致能源、环境和资源等问题,无胶纤维板研究就成为目前的热点。本论文以荻渣为原料,通过研究生物预处理条件,获得不额外添加化学胶黏剂的无胶纤维板制备,并初步探讨生物预处理实现纤维板无胶粘黏的作用机制。通过预处理体系筛选,发现杂色云芝生物预处理荻渣适用于生产无胶纤维板;通过优化预处理条件,获得了优化的预处理参数:生物预处理14d,固液比1:3,颗粒大小0。15mm,纤维板密度 0。9 kg/dm3,在该优化条件下,制备出的无胶纤维板弯曲强度和弯曲弹性模量最高可分别达到18MPa和4GPa,制备的无胶纤维板甲醛释放量低于EO级胶合板标准10倍以上。初步探讨了生物预处理的无胶粘黏机制,发现生物预处理过程中产生的多糖和漆酶均与纤维板强度呈现正相关性,生物预处理荻渣过程中使木质素发生了改性,并产生大量羟基,且使原料呈现显微多孔状,这些理化结构改变均在一定程度上强化了纤维板的无胶粘黏作用。本论文的研究,将为秸秆(尤其是荻渣)的无胶纤维板研制提供思路和技术支持。92927
毕业论文关键词:白腐菌;固体发酵;废弃物;优化;纤维板
Abstract: Due to the use of chemical adhesives, which lead to the energy, environment and resource problems。 Research on fiberboard production without adhesive has become the research hot spot。 This thesis is to produce fiberboard using Triarrhena sacchariflora residue (TSR) without adhesive and understand the relationship between bio-pretreatment and mechanical property of fiberboard。 TSR was suitable to produce fiberboard without adhesive by bio-pretreatment with Coriolus versicolor。 The optimization bio-pretreatment parameters for fiberboard were obtained as followed: bio-pretreatment time was 14d, 1:3 of solid-liquid radio, 0。15 mm of particle size, and 0。9 kg/dm3 of density of fiberboard, the MOR and MOE of fiberboard were increased to 18MPa and 4 GPa respectively。 The amount of formaldehyde released from the fiberboard was lower 10 times than plywood of E0 grade。 There were good positive correlations between MOR and MOE of TSR-based fiberboard and laccase activity and content of polysaccharide in TSR, and laccase and polysaccharide were advantageous to the adhesion of TSR and more hydroxyl group and more porous surface structure than that of untreated TSR。 The thesis provides ideas and technical support for fiberboard production without adhesive using straw。
Keywords: White-rot Fungi; Solid-state Fermentation; Waste; Optimisation; Fiberboard
目 录
1。 前 言 3
1。1 纤维板的发展状况 3
1。2 生物预处理方法制造纤维板技术 4
1。3荻渣 5
1。4研究思路 5
2。 材料与方法 7
2。1 材料 7
2。1。1 菌种 7
2。1。2 荻渣 7
2。1。3 试剂 7
2。1。4 培养基 7
2。1。5 溶液 8
2。1。6 仪器设备 8
2。2 方法 8
2。2。1 固体发酵方法 8
2。2。2 纤维板压制方法 9
2。2。3 纤维板强度测定方法 9
2。2。4 漆酶活性测定方法——ABTS法