摘要本论文对微生物燃料电池中阴极硝基酚的降解效率以及阳极、阴极协同降解硝基酚的可行性进行了研究,使污水处理与微生物燃料电池产电相结合,以实现废水净化回收资源化。通过对比实验研究了了生物阴极和化学阴极硝基酚去除效率,并将还原产物氨基酚加入阳极进行后续降解,探索了阳极、阴极协同降解硝基酚的可行性。构建了生物电化学体系包括生物阴极反应器、化学阴极反应器和空气阴极反应器,运用高效液相色谱、离子色谱等手段,对生物阴极、化学阴极和空气阴极的阴极室内硝基酚的还原性能、氨基酚的生成率和电子供体消耗进行了实验研究。实验结果表明,在不同硝基酚浓度下,生物阴极在阴极室内硝基酚浓度越低,氨基酚的生成率越大,在硝基酚浓度为50mg/L时,生物阴极硝基酚的去除率能够达到100%。后续阳极氧化过程实现了阳极、阴极协同降解硝基酚,但协同过程的系统输出电压低于阴极还原过程。30725
关键词 微生物燃料电池 硝基酚 降解 协同
毕业设计说明书(毕业论文)外文摘要
Title Study on the enhanced biodegradation of nitro phenol in microbial fuel cells
Abstract
Nitro phenol degradation in Microbial fuel cell were studied to combine the process of wastewater treatment and electricity production in microbial fuel cells,nitro phenol reduction efficiency in bio-cathode and chemical-cathode were compared,and coordination of anode and cathode for nitro phenol removal were tested. Bio-electrochemical systems including biocathode reactor,air-cathode reactor and chemical-cathode reactor were built,and the methods including high performance liquid chromatography and ion chromatography were used to test nitrophenol reduction performance, amino-phenol production rate and electron donor consumption.The result shows that if the nitrophenol concentration were lower in the biocathode at different concentration,the production rate of amino-phenol were greater. At nitro phenol concentration of 50mg/L,nitro phenol removal efficiency in biological cathode could reach 100%. The coordinate anodic and cathodic degradation of nitro phenol was achieved by the anodic oxidation process test.However,the voltage output in the coordinate process was lower than the reduction process.
Keywords :Microbial fuel cells Nitro-phenol Degradation Coordination
目 录
1 绪论 1
1.1 微生物燃料电池 1
1.2 含硝基酚废水的处理方法 2
1.3 生物阴极完全生物调控 4
1.4 本研究的主要内容 5
2 实验材料与方法 7
2.1 实验材料 7
2.2 实验装置 8
2.3 实验方法 10
2.4 数据收集 11
3 结果与讨论 12
3.1 硝基酚初始浓度对去除率的影响 12
3.2 硝基酚的降解研究 15
3.3 后续阳极氧化 18
结 论 19
致 谢 20
参考文献 21
1 绪论
1.1 微生物燃料电池
微生物燃料电池(microbial fuel cells,MFCs)是近年来热门研究的一种清洁的新型能源技术[1],它是一种能够利用污染物底物中有机物蕴含的化学能在产电微生物的催化作用下转变为人们可利用的电能的装置[2]。在阳极室内的产电微生物通过自身代谢作用可将污水中的有机物进行分解,该过程产生的电子和质子被传递到阴极室,同时能够产生电能,从而实现了处理污水和产电相结合的功效,与传统污水处理相比,可以降低污水处理的投资及运行成本[3]。当前,地球人类遭受着环境被污染破坏和资源严重匮乏的困扰,而运用MFCs能够处理有机废水和有机固体废物[4]。在MFCs产电的同时,实现了废物的处理和能源的回收利用,已经成为人们研究废物资源化的重要方向。