摘要:“Where Amazing Happen”.体育运动中的篮球是一场团队的较量,考验了团队里的个人控场能力、团队分工、协作的技巧,而作为全球最具影响力的篮球俱乐部赛事——NBA比赛的看点更加不仅仅在于其速度、力量、对抗、激情和联赛中球员高超娴熟的技术等,还在于NBA科学细致的选秀制度、转会制度等制衡体系保障各球队的实力平均分布.为此,笔者辟选出西南区五大豪强,就各大球队的综合实力与经验给我们带来的启示进行探讨.本人在参考了前人研究的基础上,应用数学建模的思想,试图运用层次分析法对其进行较深入的研究.
本文所研究的问题是关于NBA西南区五大俱乐部的综合实力排名情况,然而究竟哪些因素影响着一个球队的综合实力?进攻能力、防守能力、核心球员能力、教练执教能力、裁判的执法能力?所以,如何筛选这些因素是本文的关键所在.59497
毕业论文关键词:层次分析法,数学模型,判断矩阵,一致性,NBA篮球
Abstract:"Where Amazing Happen". Sport of basketball is a team contest, the team tested the ability of inpiduals to control the market, team pision, collaboration skills, and as the world's most influential basketball club competition --NBA surprise more than just the game in its speed, strength, fight, passion and league players superb technical skill, but also in the system of checks and balances that protect the delicate science NBA draft system, transfer system and other team's strength evenly distributed.To this end, the author of five Southwest tyrannical stocked on the overall strength and experience to the team's major revelation brings us to explore. I am in reference to the previous studies, based on the application of mathematical modeling thought, trying AHP be more in-depth study.
Problems studied in this paper is on the club's top five NBA Southwest comprehensive strength ranking, but what kinds of factors influence the overall strength of a team? Offensive ability, defensive ability, the ability to key players, coaches coaching ability, the referee's law enforcement capabilities? So, how to filter these factors is the key to this article.
Keywords: AHP, mathematical model, judgment matrix, consistency, NBA Basketball
目 录
1 引言 5
2 数学建模的基本过程 5
3问题重述 5
3.1问题分析 6
4 作出假设 6
5 建立层次结构模型 6
6 两两比较 构造判断矩阵 9
7 权重的确定 单一准则下的排序 18
8 一致性检验 18
9 模型优缺点 19
结论 20
参考文献 21
致谢 22
1 引言
NBA比赛是很多年轻人热衷的体育赛事,其科学细致的选秀制度、转会制度等制衡体系保障、球员高超娴熟的技术等都成为全球体育看点.为此,笔者辟选出西南区五大豪强,就各大球队的综合实力排名情况、及其成功因素给我们带来的启示进行探讨.本人在参考了前人研究的基础上,应用数学建模的思想,试图运用层次分析法对其进行较深入的研究.
2 数学建模的基本过程源]自[优尔^`论\文"网·www.youerw.com/
如下图所示数学建模基本流程图
层次分析法,简称AHP法,是用于处理有限个方案的多目标决策方法、层次分析的基本思想是把复杂问题分解为若干层次,在最低层次通过两两对比得出各因素的权重,通过由低到高的层层分析计算,最后计算出各方案对总目标的权数,权数最大的方案即为最优方案.