菜单
  

    人体内部的组织细胞能够简化为一个电子元件模型。细胞内外的细胞液能看做电阻Ri和Re,而细胞膜可视为电容Cm,如图2.1所示。细胞内部和外围的细胞液因为含有许多盐离子表现出高阻性,而细胞膜在低频的状况下能够防止电流进入细胞,类似于一个绝缘体。在低频情况下,由于细胞膜阻止了电流进入细胞,所以细胞表现出高阻性;而在高频情况下,电流穿过细胞膜进入了细胞,使得细胞内部和外围的细胞液构成回路,所以细胞总体的阻抗减小[7]。
     
    图2.1(a)低频状态下电流的流动轨迹(b)高频状态下电流的流动轨迹(c)细胞等效成的电子线路。其中,Ri和Re是细胞内和外溶液的阻抗,Cm是细胞膜容抗
    生物医学表明,随着空间的变化,人体各个组织和部位的细胞电特性不停地变化着,而且细胞膜的电特性随细胞整体的电活动的变化而发生变化。人体部分器官阻抗值和不同病变情况下大脑的电阻率变化分别如表2.1,表2.2所示[8]。
    表2.1  测量人体部分器官组织的的阻抗分布值(频率为20KHZ-100KHZ)
    组织    电阻率( )
    组织    电阻率( )

    骨头    166    纵向骨骼肌    1.3-1.5
    脂肪    21-28    横向骨骼肌    18-23
    肺    7.3-24    肝脏    3.5-5.5
    大脑灰质    2.8    血液    1.5
    大脑白质    6.8    脑髓液    0.65
    表2.2  四种情况下大脑阻抗的变化情况
    病变情况    数据参考    阻抗变化
    脑肌肉萎缩    Holder(1992)    增加70%-200%
    扩展性    Holder(1992)    增加5%-25%
    抑制癫痫    Boone et al.(1994)    增加或减少7%
    诱发反应    Holder et al.(1994)    减少2%-5%
    根据表2.1可知,器官组织的液体含量越多,电阻率越小,因此骨头与脂肪等的电阻率较高,血液和脑髓液的电阻率较低。根据表2.2可知,正常的器官组织和病变的器官组织的阻抗有很大的不同。因此,要是能够在疾病发作之前检查出这些变化,这对于疾病的治疗和预防有很大的帮助。
    2. 2  EIT的工作原理
    2.2. 1  EIT电磁场理论
    麦克斯韦是电磁学理论的集成者,统计物理学的奠基人之一,经典电动力学的创始人,被普遍认为是对二十世纪最有影响力的十九世纪物理学家,他所建立的麦克斯韦方程组不仅是电磁学的基本定律,也是光学的基本定律。

    其中, 是泊松算子,B,E,D,J,q分别是磁感应强度,电场强度,电感应强度,传导电流密度,电荷量。
    由于受到实际条件的限制,为了简化问题我们不妨做出以下假设:
    (a)    当电流频率低到一定程度时(<100KHZ),位移电流与介电常数能够忽略不计。
    (b)    生物体或者说人体能被看成是离子导电体。
    (c)    在实际操作时,接触电阻与电极的尺寸可以忽略。
    于是,我们构建的模型能够看成一个准静态电磁场,并且,传导电流满足以下公式
  1. 上一篇:multisim音频放大器的设计和研究
  2. 下一篇:基于FPGA的数字相关设计+文献综述
  1. FHA和PHA的交叉验证技术在...

  2. HFSS法拉第笼对频率选择表面性能的影响

  3. 小波分析用于图像增强的研究MATLAB仿真

  4. 灰色建模技术的通信运行指标预测

  5. 基于多指标决策的通信网...

  6. Verilog的汉明码(15,11)编解码器的设计与仿真

  7. AT89C51单片机IIC总线的监控...

  8. 高警觉工作人群的元情绪...

  9. C++最短路径算法研究和程序设计

  10. 现代简约美式风格在室内家装中的运用

  11. 巴金《激流三部曲》高觉新的悲剧命运

  12. g-C3N4光催化剂的制备和光催化性能研究

  13. 浅析中国古代宗法制度

  14. 中国传统元素在游戏角色...

  15. 江苏省某高中学生体质现状的调查研究

  16. 上市公司股权结构对经营绩效的影响研究

  17. NFC协议物理层的软件实现+文献综述

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回