摘要:在本篇论文中,我首先阐述了相关理论的背景知识。然后,我对目标方程进行变换。最后,我对工作内容讨论总结,直到得出结论。在本文中,我引用了非线性SchrÖdinger方程,Bose-Einstein凝聚,Gross-Pitaevskii方程,自相似变换,Feshbach共振和BCS-BEC渡越,超冷费米气体及其研究的新进展等方面的背景知识。我引用了三个非线性项来研究(1+1)维广义立方五次非线性SchrÖdinger方程(GCQ-NLSE)。利用F扩展法找到GCQ-NLSE方程的分析解,同时不利用任何可积分性条件。我将目标方程从一维模式推广到了三维模式。为了得到三维分析解,我使用了自相似法和相位变换法来求解Gross-Pitaevskii方程。在得到三维解析解时,不会在其他地方使用任何的可积分约束条件。通过对亮孤子解的传播及其动力学的研究发现,亮孤子的振幅没有显示出周期性行为,并且所得结果与实验观察结果非常吻合。
关键词:Gross-Pitaevskii方程;BEC-BCS渡越;自相似变换;孤子;F展开法
Abstract:In this paper, I first elaborated on the background of the relevant theory. Then I transform the target equation. Finally, I discuss the contents of the discussion, then reach the conclusion. In this paper, I refer to the nonlinear Schrödinger equation, Bose-Einstein condensation, Gross-Pitaevskii equation, self-similar transformation, Feshbach resonance and BCS-BEC crossing, super-cold Fermi gas and its new progress in research background knowledge. I have used three nonlinear terms to study the (1 + 1) - dimensional generalized cubic cubic nonlinear Schrödinger equation (GCQ - NLSE). The analytical solution of the GCQ-NLSE equation is found by using the F-expansion method, without using any integrability condition. I extended the target equation from the one-dimensional model to the three-dimensional model. In order to obtain a three-dimensional analytical solution, I used the self-similarity method and the phase transformation method to solve the Gross-Pitaevskii equation. When a three-dimensional analytic solution is obtained, no integrable constraint is used elsewhere. The results show that the amplitude of the bright soliton solution does not show the periodic behavior, and the results are in good agreement with the experimental results.
Keywords: Gross-Pitaevskii equation; BEC-BCS; self-similar transformation; solitons; F expansion method.
目录
第一章绪论--1
1.1研究背景--1
1.1.1.非线性SchrÖdinger方程1
1.1.2.Bose–Einstein凝聚及其应用-2
1.1.3.Bose-Einstein凝聚的Gross-Pitaevskii方程-41.1.4.自相似变换及自相似解5
1.1.5.Feshbach共振和BCS-BEC渡越-7
1.1.6.超冷费米气体及其研究的新进展10
1.2本文主要工作-12
第二章理论研究13
2.1目标方程-14
2.1.1.一维GCQ-NLSE方程配方-14
2.1.2.F展开法解析目标方程14
2.2自相似变换---15
2.2.1.Gross-Pitaevskii方程变换--15
2.2.2.目标方程三维推广---16
2.3亮孤子解析--18
结论21
致谢-22
参考文献23
第一章绪论
随着实验技术的不断成熟,物理学家对一维孤子的研究已经相当庞大,但对于三维状态却很少涉及,就目前的结果而言,方程的变量间却含有额外的限制。可喜的是近年里,在几个开创性实验中,实验者分别在有吸引力和排斥性相互作用的BECs中观察到亮孤子和暗孤子。除此之外,科学家也积极地对动力学,如反射,碰撞,甚至孤子涡旋的超冷原子进行研究。在其他方面,从Bardeen-Cooper-Schrieffer(BCS)状态到BEC在超低温捕获的费米气体中超流体的成功实验,并在BCS-BEC渡越研究领域有了很大的突破。接下来,在本章节中我们将主要对背景知识进行详细的介绍,并对本文的主要工作进行简短的概括。