摘要:EHD(electro hydrodynamic)强化传热技术是一种利用电场、流场和温度场的相互作用来达到强化传热目的的主动强化传热方式。为了进一步探索外加电场对于气泡的作用,本课题针对均匀电场下气泡周围电场分布状况进行研究。选用了R113工质,采用ANSYS计算软件,编程求解出不同电场作用下气泡周围场强分布特性。分别向上极板施加15kv,20kv,25kv的直流高压电场,对单个气泡附壁、脱离及多个气泡生成并部分脱离时电场分布特性进行了数值模拟。电场使气泡行为特征和运动规律发生改变,从而改变流场结构可实现传热强化,所以气泡起着核心纽带作用,气泡行为及运动规律等内容的研究,成为电场强化。传热技术研究的难点与重点。8825
关键词: 电水动力学;气泡;均匀电场;电场特性;数值模拟
EFFECT ON BUBBLES IN ELECTRIC FIELD IN R113 WORKING FLIUDS
ABSTRACT:EHD heat transfer enhancement (electro hydrodynamic) technology is a use of electric field, flow field and temperature field of heat transfer enhancement interaction to achieve the purpose of actively strengthening heat transfer mode. In order to further explore the role of applied electric field in bubble, This research focuses on the numerical simulation of the electric field distribution around the bubble that is under the uniform electric field. The working fluid used is R113. ANSYS is used to simulate the electric field distribution of the bubble under different uniform electric field. The top plate is respectively exerted 15kv,20kv and 25kv direct-current high voltage electric field, the simulations is carried out when a bubble attaches, departs or when the formation with partial departure of several bubbles. Electric field makes the bubble behavior characteristics and the motion law of change, which changes the flow field structure can realize heat transfer strengthen, so bubbles play a core link function, the bubble behavior and movement law, etc, become a electric field strengthening. The research emphasis and difficulty of heat transfer technology.
KEYWORDS: EHD (electro hydrodynamics);bubbles;uniform electric field;electric characteristics;numerical simulations