1.2本课题的国内外研究现状
2 超声换能器和压电材料
2.1超声换能器简介
超声换能器是一种能把高频电能转化为机械能的装置。由材料的压电效应将电信号转换为机械振动。超声波换能器是一种能量转换器件,它的功能是将输入的电功率转换成机械功率(即超声波)再传递出去,而自身消耗很少的一部分功率。
超声换能器实际模型 超声换能器几何模型
一般的换能器由外壳、匹配层、压电陶瓷圆盘换能器、背衬、引出电缆和Cymbal阵列接收器组成。压电陶瓷圆盘换能器采用厚度方向极化的PZT-8压电材料制成,Cymbal阵列接收器由8~16只Cymbal换能器、两个金属圆环和橡胶垫圈组成。本发明的作用距离大于35m,频带宽度达到10kHz,能检测高速移动的远距离目标。超声波换能器,包括外壳(1)、匹配层即声窗(2)、压电陶瓷圆盘换能器(3)、背衬(4)、引出电缆(5),其特征在于它还包括Cymbal阵列接收器,它由引出电缆(6)、8~16只Cymbal换能器(7)、金属圆环(8)、(9)和橡胶垫圈(10) 组成;Cymbal阵列接收器位于圆盘式压电换能器3之上;压电陶瓷圆盘换能器用作基本的超声波换能器,由它发射和接收超声波信号;Cymbal阵列接收器位于圆盘式压电换能器之上,作为超声波接收器,用于接收圆盘换能器频带之外的多普勒回波信号。
超声波换能器的应用十分广泛,它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等。按实现的功能分为超声波加工、超声波清洗、超声波探测、检测、监测、遥测、遥控等;按工作环境分为液体、气体、生物体等;按性质分为功率超声波、检测超声波、超声波成像等。超声波换能器的应用十分广泛,它按应用的行业分为工业、农业、交通运输、生活、医疗及军事等。按实现的功能分为超声波加工、超声波清洗、超声波探测、检测、监测、遥测、遥控等;按工作环境分为液体、气体、生物体等;按性质分为功率超声波、检测超声波、超声波成像等。
本文的超声换能器可以看做压电陶瓷变压器,压电陶瓷变压器是利用极化后压电体的压电效应来实现电压输出的。其输入部分用正弦电压信号驱动, 通过逆压电效应使其产生振动, 振动波通过输入和输出部分的机械耦合到输出部分, 输出部分再通过正压电效应产生电荷,实现压电体的电能-机械能-电能的两次变换,在压电变压器的谐振频率下获得最高输出电压。与电磁变压器相比, 这具有体积小, 质量轻,功率密度高, 效率高, 耐击穿, 耐高温, 不怕燃烧, 无电磁干扰和电磁噪声, 且结构简单、便于制作、易批量生产, 在某些领域成为电磁变压器的理想替代元件等优点。此类变压器用于开关转换器、笔记本电脑、氖灯驱动器等。
2.2压电材料简介
压电材料是受到压力作用时会在两端面间出现电压的晶体材料。它是由法国物理学家P. 居里和J.居里兄弟于1880年所发现。把重物放在石英晶体上,晶体某些表面会产生电荷,电荷量与压力成比例。这一现象被称为压电效应。随即,居里兄弟又发现了逆压电效应,即在外电场作用下压电体会产生形变。压电效应的机理是:具有压电性的晶体对称性较低,当受到外力作用发生形变时,晶胞中正负离子的相对位移使正负电荷中心不再重合,导致晶体发生宏观极化,而晶体表面电荷面密度等于极化强度在表面法向上的投影,所以压电材料受压力作用形变时两端面会出现异号电荷。反之,压电材料在电场中发生极化时,会因电荷中心的位移导致材料变形。利用压电材料的这些特性可实现机械振动(声波)和交流电的互相转换。因而压电材料广泛用于传感器元件中,例如地震传感器,力、速度和加速度的测量元件以及电声传感器等。现在,这类材料被广泛运用,打火机的火花即运用此技术。压电现象是100多年前居里兄弟研究石英时发现的。如今压电材料在日常生活以及工业生产、高科技技术领域也得到了广泛运用。如日常生活中所用的煤气灶或热水器的点燃机制就运用了压电效应。生产厂家在这类压电点火装置内,藏着一块压电陶瓷,当用户按下点火装置的弹簧时,传动装置就把压力施加在压电陶瓷上,使它产生很高的电压,进而将电能引向燃气的出口放电。于是,燃气就被电火花点燃了。压电陶瓷的这种功能就叫做压电效应。