[13] Ng K A, Ho J Z, Koh S T。 Effects of microphone position on snore and signal quality and patient comfort [A]。 Proceedings of ICSP 2008 [C]。 Beijing, China: IEEE Press, 2008: 2130-2133
[14] Ng K A, Koh S T, Puvanendran K, et al。 Snore signal enhancement and activity detection
via translation-invariant wavelet transform [J]。 IEEE Transactions on Biomedical Engineering, 2008, 5(10):2332-2342
[15] 陈伟伟。 基于鼾声检测的睡眠呼吸暂停低通气综合症诊断 [D]。 大连:大连理工大 学信息与通信工程学院,2011
[16] Hill D P, Osman Z E, Osborne E J, et al。 Changes in snoring during natural sleep identified by acoustic crest factor analysis at different times of night [J]。 Clinical Otolaryngology, 2000, 25: 507-510
[17] Solà-Soler J, Jané R, Fiz A J , et al。 Pitch analysis in snoring signals from simple snorers and patients with obstructive sleep apnea [A]。 Proceedings of 2rd Joint EMBS/BMES Conference [C]。 Houston, USA: IEEE Press, 2002: 1527-1528
[18] Abeyratne R U, Wakwella S A, Hukins Craig。 Pitch jump probability measures for the snoring sounds in apnea [J]。 Journal of Physiological Measurement, 2005, 26: 779-798
[19] 许辉杰,余力生,黄魏宁,等。 OSAHS 患者与单纯打鼾者鼾声声学特性初步研究 [J]。
听力学及言语疾病杂志, 2009, 17 (3): 235-238
[20] Liao Wenhung, Su Yisyuan。 Classification of audio signals in all-night sleep studies [A]。 Proceedings of 18th International Conference on Pattern Recognition [J]。 Hong Kong,
China, 2006: 302-305
[21] Ng K A, Koh S T, Baey E, et al。 Could formant frequencies of snore signals be an alternative means for the diagnosis of obstructive sleep apnea [J]。 Sleep Medicine, 2008, 9: 894-898
[22] Bertino G,Matti E, Migliazzi S, et al。 Acoustic changes in voice after surgery for snoring:
preliminary results [J].ACTA Otorhinolaryngol Italy, 2006, 26: 110-114
[23] 赵玉霞。 基于共振峰的 OSAHS 筛查 [D]。 大连:大连理工大学信息与通信工程学 院,2012
[24] Duckitt D W, Tuomi K S, Niesler R T。 Automatic detection, segmentation and assessment of snoring from ambient acoustic data。 Physiol。 Meas。, 2006 (27): 1047-1056
[25] Cavusoglu M, Kamasak M, Erogul O, et al。 An efficient method for snore/nonsnore classification of sleep sounds [J]。 Physiol。 Meas。, 2007(28): 841–853
[26] He Suning , Yu Juebang。 A Novel Chinese Continuous Speech End2point Detection Meth od Based on Time Domain Features of the WordStructure [J ] 。 IEEE Int 。 Conf 。 on Com mun。 Circuits and Systems and West Sino Expositions , 2002。 992 - 996。
[27] Haigh J A,Mason J S。Robust Voice Activity Detection Using Cepstral Features[J]。Comp uter , Communication , Control and Power Engineering , Proceedings of the IEEE Regio n 10 Conference TENCON,1993。
[28] CHOI S-J, WOODS JW。 Motion Compensated 3-D Subband Coding of Video[J]。 IEEE Transactions on Image Processing, 1999, 8(2): 155-167。
[29] Abdallah I , Montresor S , Baudry M。 Robust SpeechPnon – speech Detection in Adverse Conditions Using an Entropy Based Estimator[C ] 。 In : International Conference on Digital Signal Processing ,1997。 757 - 760。
[30] I。 Cohen。 Noise Spectrum Estimation in Adverse Environment: Improved Minima Controlled Recursive Averaging[J]。 IEEE Trans。on Speech and Audio Processing 2003,11(5):466-475。
[31] Y。 Ephraim and D。 Malah, \Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator,"IEEE Trans。 Acoustics, Speech and Signal Processing, Vol。ASSP-32, No。 6, December 1984, pp。 1109-1121。
[32] I。 Cohen and B。 Berdugo, \Speech Enhancement for Non-Stationary Noise Environments," Signal Processing, Vol。 81,No。 11, pp。 2403-2418, November 2001。