摘要:由于水面无人艇具有强非线性、不确定性的特点和环境变化的因素,因此它的航向跟踪控制非常复杂。水面无人艇航向控制系统是水面无人艇自动控制系统中最为重要的环节之一。本文以模糊控制理论为基础,把模糊控制策略与非线性Backstepping鲁棒PID的控制策略相结合,构建水面无人艇航向模糊自适应鲁棒PID控制器。
本文首先建立水面无人艇的航向系统的非线性数学模型,并根据该模型利用Backstepping控制算法和闭环增益成形算法相结合设计了鲁棒PID控制器。然后构建了水面无人艇航向鲁棒PID控制系统。由于模糊控制技术具有不依赖精确的数学模型、鲁棒性和适应性好的特点。因此,为提高控制效果引入模糊控制理论,将两种控制策略优点相结合,利用模糊控制分析系统实现对PID控制器的参数进行实时的整定。考虑系统存在风浪干扰的情况下,利用模糊自适应PID控制器对水面无人舰艇进行控制,与常规PID控制器和鲁棒PID控制器在航向控制相比,模糊自适应PID控制器反应速度更快、超调量更小、鲁棒性更好、抗干扰能力更强,能够满足水面无人艇航行的需要。
关键词:水面无人艇;航向控制;模糊控制;模糊自适应;PID控制
Abstract:Because unmanned surface vessel has a strong nonlinearity, uncertainty and environmental factors change, its course control is very complicated. The course control system is one of the most important characteristics of the automatic control system of unmanned surface vessel. By combining the fuzzy control strategy with the control strategy of the nonlinear Backstepping robust PID, a fuzzy adaptive robust PID controller for the course control of unmanned surface vessel is constructed based on the fuzzy control theory in this thesis.
A nonlinear mathematical model of the course system of unmanned surface vessel is established in this thesis. According to the model, a robust PID controller is designed by using Backstepping control algorithm and closed-loop gain shaping algorithm. As a result, a robust PID control system for course of unmanned surface vessel is constructed. Fuzzy control technology has the characteristics of no-relying on accurate mathematical model, robustness and adaptability. Therefore, in order to improve the control effect, the fuzzy control theory is introduced and the advantages of the two control strategies are combined. The fuzzy control analysis system is used to realize real-time tuning for the parameters of the PID controller. In view of the wind and waves interference in actual environments, the fuzzy adaptive PID controller is applied to control the unmanned surface vessel. Compared with the conventional PID controller and the robust PID controller in course control, fuzzy adaptive PID controller has faster response speed, smaller overshoot, better robustness, strong anti-interference ability and is able to meet the needs of the unmanned surface vessel navigation.
Keywords: Unmanned Surface Vessel; Ship course control; Fuzzy control; Fuzzy adaptive; PID control
目录
第一章绪论 1
1.1课题研究背景与意义 1
1.2相关领域的研究进展及成果 1
1.2.1模糊控制领域的研究状况 1
1.2.2船舶航向控制领域的研究状况 2
1.3本文主要研究内容 3
第二章无人艇的运动数学模型 5
2.1船舶操纵运动坐标系 5
2.2水面无人艇运动方程 6
2.2.1水面无人艇的空间运动方程