摘要 人们日常生活中接触到的图像往往不能直接利用,需要预先转换为计算机能够正常识别的数字图像,并进行后续的加工处理才能为人所用。正是如此图像处理在人们日常生活中的地位举足轻重,受到了学者们的广泛重视。 而图像增强作为图像处理最为基础的环节,其效果的好坏决定了整个图像处理的成败。正是如此,图像增强成了学者们的研究热点。 本文先对图像增强的基本理论进行概述,介绍常用图像增强算法的工作原理,最后针对视网膜血管图像增强这一具体领域,分析常用增强算法的优缺点,并仿真出处理效果。 针对其中的Tramline匹配滤波图像增强存在的两点不足: (1)第二步处理环节中用到的Prewitt算子不能提供精确的边缘定位。 (2)第三步处理环节中高斯匹配滤波器增强血管与背景对比度的效果有待提升。 提出用Sobel算子代替前者来检测图像的边缘,用更为成熟的双尺度2-D Gabor滤波器增强血管与背景的对比度,藉此作出改进。 通过Matlab仿真出最终的增强效果,与其他算法增强效果进行对比,改进效果明显,达到了预期的效果。 39653
毕业论文关键词: 图像增强 Tramline匹配滤波 视网膜血管图像
II Abstract The images that people get in daily life can't be used directly and need to be converted to digital images what can be recognized by computer. Then the image will be suitable for people to use. So image processing is posited by the scholars' attention in people's daily life. As the most basic part of image processing image enhancement determines the success or failure of the whole image processing. It is the image enhancement becomes the research hotspot of the scholars. This paper first on the basic theory of image enhancement are summarized then in view of retinal blood vessel image enhancement in this specific field the common image enhancement algorithm in-depth study and Simulation of treatment effect. Aiming at the shortcomings of the existing Tramline matching filter image enhancement: (1) The Prewitt operator used in the second step process can not provide accurate edge location. (2) The effect of the Gauss matched filter on the enhancement of blood vessel and background contrast in the third steps is to be improved. Sobel operator is proposed to detect the edge of the image and the two - scale two - scale Gabor is more mature.The contrast between the filter and the background is improved. Through the Matlab simulation of the final enhancement effect compared with other algorithms the effect of the improvement is obvious and the expected results are achieved.
Keywords: Image enhancement Tramline matched filter Retinal vascular image
目录
摘 要 . I
Abstract II
第一章 绪论 1
1.1 课题研究背景及意义 . 1
1.2 国内外研究现状 . 1
1.3 本课题研究的主要内容和组织结构 . 4
第二章 图像增强的基本理论 5
2.1 图像和数字图像 . 5
2.2 数字图像的基本概念 . 5
2.2.1 数字图像的表示 . 5
2.2.2 图像的灰度 . 6
2.2.3 灰度直方图 . 6
2.3 数字图像增强概述 . 8
2.4 图像增强的现状与应用 . 9
2.5 本章小结 10
第三章 传统匹配滤波器的图像增强 . 11
3.1 传统匹配滤波器图像增强概述 11
3.1.1 构造零度方向上的滤波器 ( ) 0, g mn = 11
3.1.2 构造θ 角度方向上的滤波器 ( ) , g mn θ = . 12
3.2 用传统匹配滤波器增强的效果 11 基于匹配滤波器的图像增强:http://www.youerw.com/zidonghua/lunwen_40035.html