可以分时复用,共享处理器;
方便调整处理器的系数实现自适应滤波;
可实现模拟处理不能实现的功能:线性相位、多抽样率处理、级联、易于存储等;
可用于频率非常低的信号。
(13)DSP缺点
需要模数转换;
受采样频率的限制,处理频率范围有限;
数字系统由耗电的有源器件构成,没有无源设备可靠。
但是其优点远远超过缺点。
1.2 DSP的应用及发展前景
1.2.1 数字滤波器
数字滤波器的实用型式很多,大略可分为有限冲激响应型和无限冲激响应型两类,可用硬件和软件两种方式实现。在硬件实现方式中,它由加法器、乘法器等单元所组成,这与电阻器、电感器和电容器所构成的模拟滤波器完全不同。数字信号处理系统很容易用数字集成电路制成,显示出体积小、稳定性高、可程控等优点。数字滤波器也可以用软件实现。软件实现方法是借助于通用数字计算机按滤波器的设计算法编出程序进行数字滤波计算。
1.2.2 离散傅里叶变换的快速算法
1965年J.W.库利和T.W.图基首先提出离散傅里叶变换的快速算法,简称快速傅里叶变换,以FFT表示。自有了快速算法以后,离散傅里叶变换的运算次数大为减少,使数字信号处理的实现成为可能。快速傅里叶变换还可用来进行一系列有关的快速运算,如相关、褶积、功率谱等运算。快速傅里叶变换可做成专用设备,也可以通过软件实现。与快速傅里叶变换相似,其他形式的变换,如沃尔什变换、数论变换等也可有其快速算法。
1.2.3 谱分析
在频域中描述信号特性的一种分析方法,不仅可用于确定性信号,也可用于随机性信号。所谓确定性信号可用既定的时间函数来表示,它在任何时刻的值是确定的;随机信号则不具有这样的特性,它在某一时刻的值是随机的。因此,随机信号处理只能根据随机过程理论,利用统计方法来进行分析和处理,如经常利用均值、均方值、方差、相关函数、功率谱密度函数等统计量来描述随机过程的特征或随机信号的特性。
实际上,经常遇到的随机过程多是平稳随机过程而且是各态历经的,因而它的样本函数集平均可以根据某一个样本函数的时间平均来确定。平稳随机信号本身虽仍是不确定的,但它的相关函数却是确定的。在均值为零时,它的相关函数的傅里叶变换或Z变换恰恰可以表示为随机信号的功率谱密度函数,一般简称为功率谱。这一特性十分重要,这样就可以利用快速变换算法进行计算和处理。
在实际中观测到的数据是有限的。这就需要利用一些估计的方法,根据有限的实测数据估计出整个信号的功率谱。针对不同的要求,如减小谱分析的偏差,减小对噪声的灵敏程度,提高谱分辨率等。已提出许多不同的谱估计方法。在线性估计方法中,有周期图法,相关法和协方差法;在非线性估计方法中,有最大似然法,最大熵法,自回归滑动平均信号模型法等。谱分析和谱估计仍在研究和发展中。
数字信号处理的应用领域十分广泛。就所获取信号的来源而言,有通信信号的处理,雷达信号的处理,遥感信号的处理,控制信号的处理,生物医学信号的处理,地球物理信号的处理,振动信号的处理等。若以所处理信号的特点来讲,又可分为语音信号处理,图像信号处理,一文信号处理和多文信号处理等。
1.2.4 数字信号处理系统
无论哪方面的应用,首先须经过信息的获取或数据的采集过程得到所需的原始信号,如果原始信号是连续信号,还须经过抽样过程使之成为离散信号,再经过模数转换得到能为数字计算机或处理器所接受的二进制数字信号。如果所收集到的数据已是离散数据,则只须经过模数转换即可得到二进制数码。数字信号处理器的功能是将从原始信号抽样转换得来的数字信号按照一定的要求,例如滤波的要求,加以适当的处理,即得到所需的数字输出信号。经过数模转换先将数字输出信号转换为离散信号,再经过保持电路将离散信号连接起来成为模拟输出信号,这样的处理系统适用于各种数字信号处理的应用,只不过专用处理器或所用软件有所不同而已。 TMS320C5502基于DSP的FFT编程设计(3):http://www.youerw.com/zidonghua/lunwen_9420.html