摘要 铜基复合材料具有高的强度、导电性和导热性,而且还具有良好的抗电弧侵蚀和抗磨损能力,其优异的性能和经济的成本使之在电工、电子、汽车制造和航空航天领域有着越来越广泛的应用。本论文分别计算了Al-CuO-Cu系、Al-Ni2O3-Cu系和Ti-C-Cu系的反应热力学,并对反应结果进行SEM观察和EDS能谱分析,并结合XRD鉴定反应产物的相组成,建立反应模型,分析反应过程,探讨反应机理。研究结果表明,Al-Ni2O3-Cu系和Ti-C-Cu系基本按热力学预测的方向进行,分别生成-Al2O3和TiC增强相,制备出颗粒增强铜基复合材料。随着增强相体积分数的增加,增强相的尺寸减小,分布均匀性提高。而Al-CuO-Cu系由于其反应放热量大,反应过于激烈,难以成型,有关Al-CuO-Cu系的反应机理有待进一步研究。10017
关键词 原位反应,反应机理,热力学,铜基复合材料
毕业设计说明书(论文)外文摘要
Title in-situ reaction technique of copper matrix composites
Abstract Copper matrix composites has high strength, electrical conductivity and thermal conductivity, but also has good resistance to arc erosion and wear resistance, its excellent performance and economic cost make it widely used in the field of electrical, electronics, automotive and aerospace. The reaction thermodynamics of the Al-CuO-Cu systems、the Al-Ni2O3-Cu system and the Ti-C-Cu systems were calculated, and the SEM observation and EDS spectrum of the reaction products were analyzed, the phase composition of reaction products were identified combining with XRD, the reaction process model were built to explore the reaction mechanism. The results show that the Al-Ni2O3-Cu system and Ti-C-Cu system reacted in accordance with the reaction thermodynamics, and generate the -Al2O3 and TiC particle reinforced phase respectively, particle reinforced copper matrix composites were prepared. With the increasing volume fraction of the reinforcement, the reaction of the reinforcement particle size were smaller, distribution were more dispersed. Al-CuO-Cu system due to its high reaction heat release, the reaction is it is difficult to shape,further study of the reaction mechanism of the Al-CuO-Cu system are needed.
Key words in-situ reaction technique , reaction mechanisms, thermodynamics, copper matrix composites
目 次
1引言2
1.1 铜基复合材料的原位合成法2
1.1.1固/固原位合成法.2
1.1.2液/固原位合成法.3
1.1.3液/液原位合成法.4
1.1.4液/气原位合成法.5
1.2 铜基复合材料的研究现状和展望5
2实验.6
2.1 实验设备6
2.2 实验原料6
2.3 实验流程.7
2.3.1球磨7
2.3.2成坯8
2.3.3制样8
3实验反应机理分析.8
3.1 热力学分析8
3.1.1热力学计算基础9
3.1.2反应系可能发生的反应9
3.2 反应过程分析.11
3.2.1 Al-Ni2O3-Cu系的反应过程分析11
3.2.3 Ti-C-Cu系的反应过程分析14
4 增强相体积分数对反应生成物的影响.16
5实验结论17
致谢.19
参考文献.20
1 引言
铜基复合材料具有高的强度、导电性和导热性,而且还具有良好的抗电弧侵蚀和抗磨损能力,其优异的性能和经济的成本使之在电工、电子、汽车制造和航空航天领域有着越来越广泛的应用, 例如Cu/Mo与Cu/W可用于无磁的真空器件、大功率集成器件和微波器件的散热器及军用电子设备的热控板和集成电路的散热器等[1]。但是随着科学技术的发展,铜基复合材料的导电性与其强度及高温性能难以兼顾,不能全面满足航天、航空、微电子等高技术迅速发展对其综合性能的要求[2-4]。所以研制更优异性能的铜基复合材料是发挥铜的优势、开拓铜的应用领域的一种行之有效的方法。原位合成法能够使铜基复合材料具有更优异的物理性能,这类复合材料中的增强相与基体颗粒界面没有污染,并且有良好的界面润湿性,与传统搅拌铸造法制备的复合材料相比,原位合成的铜基复合材料强度大幅提高,同时保持较好韧性和高温性能。例如碳化钨颗粒与铜基有良好的润湿性,并且不会在晶内形成复杂的界面,形成的铜基复合材料在较宽的温度范围内(室温到1400℃)都能保持较好的性能[5];用熔渗法可制备出热导率为140~50W/(m•℃)的Cu/SiC复合材料[6]。 铜基复合材料的原位合成工艺:http://www.youerw.com/cailiao/lunwen_8922.html