摘要面对现今社会科技的飞速发展,传统的电容器的缺点日益凸显:电容量低、循环使用次数少、充放电速率低等等,其低劣的电性能已不能满足当今社会的需要。与之相比,超级电容器具有循环使用寿命高,高电容,充放电速率快以及可提供的瞬时电压高等特点,其优异的电性能已经吸引了学界极大的关注。本实验以改进的Hummers法所制备的石墨烯为原料,再经过聚苯胺原位合成,最后通过水热法制备出石墨烯/聚苯胺/Co3O4复合材料。实验充分结合了石墨烯的高导电性和高比表面积特性,Co3O4较高的电容量以及聚苯胺良好的环境稳定性和特殊的杂化/去杂化化学过程。实验结果通过红外光谱法,X射线衍射法,扫描电子显微镜,热重分析法,循环伏安法以及恒电流充放电法进行表征。表征结果显示,复合材料四氧化三钴的质量分数约为41%,在2 A/g、3 A/g、4A/g条件下测试时,电极比电容量分别为955, 946, 930 F g-1。所制备的电极材料具有良好的电化学性能,循环稳定性优异。61971
毕业论文关键词: 超级电容器;石墨烯;聚苯胺;四氧化三钴;复合材料。
Abstract Faced with the rapid development of modern social science and technology, the shortcomings of traditional capacitors is increasingly obvious: low capacity, low cycle times charge-discharge rate is low, etc., the poor electrical properties can not meet the needs of today's society. In contrast, the super capacitor has a cycle life, high capacitance, and fast charge-discharge rate and high transient voltages available, its excellent electrical performance has attracted a great deal of academic attention. In this experiment, the graphene modified Hummers method prepared as raw materials, through the polyaniline synthesis, and finally prepare graphene / polyaniline / Co3O4 composite by hydrothermal method. Experimental graphene fully integrated high conductivity and high specific surface area characteristics, Co3O4 high capacity and good environmental stability of polyaniline and a special hybrid / hybrid to the chemical process. The experimental results by infrared spectroscopy, X-ray diffraction, scanning electron microscopy, thermal gravimetric analysis were characterized by cyclic voltammetry and constant current charge-discharge method. The results showed the composite cobalt oxide mass fraction of about 41% in the next 2 A / g, 3 A / g, 4A / g condition test, electrodes 955, 946, 930 F g-1 ratio of the capacity respectively electrode material prepared with good electrochemical performance and excellent cycle stability.
Keywords: Supercapacitor; Graphene; Polyaniline; Cobalt oxide; Composite materials.
目录
Abstract 3
1 绪论 6
1.1 课题背景 6
1.2 超级电容器原理 6
1.3 石墨烯的制备方法 7
1.4 炭基超级电容器电极材料的研究进展 8
1.5 超级电容器的应用 11
1.6 课题意义 12
2 G-PANI-Co3O4的制备 13
2.1 引言 13
2.2 仪器与试剂 13
2.2.1 实验试剂 13
2.2.2 设备 14
2.3 表征手段 14
2.3.1 红外光谱 14
2.3.2 X射线衍射 15
多孔石墨烯/聚苯胺/Co3O4超级电容器电极材料制备:http://www.youerw.com/huaxue/lunwen_67975.html