所以通过奥数算法调查可知:
原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。
拿取最后一根火柴算赢的话。
通则:有n支火柴,每次可取1至k支,则甲每次取後所留的火柴数目必须为k+1之倍数。
取火柴的游戏
题目1:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根,
可将一堆全取走,但不可不取,最后取完者为胜,求必胜的方法。
题目2:今有若干堆火柴,两人依次从中拿取,规定每次只能从一堆中取若干根,
可将一堆全取走,但不可不取,最后取完者为负,求必胜的方法。
这个游戏,我就在想有没有一个定论呢。下面就来试着证明一下吧
先解决第一个问题吧。
定义:若所有火柴数异或为0,则该状态被称为利他态,用字母T表示;否则,
为利己态,用S表示。
[定理1]:对于任何一个S态,总能从一堆火柴中取出若干个使之成为T态。
证明:
若有n堆火柴,每堆火柴有A(i)根火柴数,那么既然现在处于S态,
c = A(1) xor A(2) xor … xor A(n) > 0;
把c表示成二进制,记它的二进制数的最高位为第p位,则必然存在一个A(t),它二进制的第p位也是1。(否则,若所有的A(i)的第p位都是0,这与c的第p位就也为0矛盾)。
那么我们把x = A(t) xor c,则得到x < A(t).这是因为既然A(t)的第p位与c的第p位同为1,那么x的第p位变为0,而高于p的位并没有改变。所以x < A(t).而
A(1) xor A(2) xor … xor x xor … xor A(n)
= A(1) xor A(2) xor … xor A(t) xor c xor … xor A(n)
= A(1) xor A(2) xor… xor A(n) xor A(1) xor A(2) xor … xor A(n)
= 0
这就是说从A(t)堆中取出 A(t) - x 根火柴后状态就会从S态变为T态。证毕
[定理2]:T态,取任何一堆的若干根,都将成为S态。
证明:用反证法试试。 若
c = A(1) xor A(2) xor … xor A(i) xor … xor A(n) = 0;
c' = A(1) xor A(2) xor … xor A(i') xor c xor … xor A(n) = 0;
则有
c xor c' = A(1) xor A(2) xor … xor A(i) xor … xor A(n) xor A(1) xor A(2) xor … xor A(i') xor c xor … xor A(n) = A(i) xor A(i') =0
进而推出A(i) = A(i'),这与已知矛盾。所以命题得证。
[定理 3]:S态,只要方法正确,必赢。
最终胜利即由S态转变为T态,任何一个S态,只要把它变为T态,(由定理1,可以把它变成T态。)对方只能把T态转变为S态(定理2)。这样,所有S态向T态的转变都可以有己方控制,对方只能被动地实现由T态转变为S态。故S态必赢。
[定理4]:T态,只要对方法正确,必败。
由定理3易得。
接着来解决第二个问题。
定义:若一堆中仅有1根火柴,则被称为孤单堆。若大于1根,则称为充裕堆。
定义:T态中,若充裕堆的堆数大于等于2,则称为完全利他态,用T2表示;若充裕堆的堆数等于0,则称为部分利他态,用T0表示。
孤单堆的根数异或只会影响二进制的最后一位,但充裕堆会影响高位(非最后一位)。一个充裕堆,高位必有一位不为0,则所有根数异或不为0。故不会是T态。
[定理5]:S0态,即仅有奇数个孤单堆,必败。T0态必胜。证明:
S0态,其实就是每次只能取一根。每次第奇数根都由己取,第偶数根都由对 计算机游戏两个火柴堆的程序设计(3):http://www.youerw.com/jisuanji/lunwen_6693.html