电子器件散热技术研究_毕业论文

毕业论文移动版

毕业论文 > 机械论文 >

电子器件散热技术研究

摘要分别选用四种不同粒径的氧化铝颗粒填充到环氧树脂中,搅拌均匀,形成Al2O3/环氧树脂复合材料研究同种氧化铝颗粒不同含量时对复合材料导热系数的影响,并且比较相同含量,不同粒径时,复合材料导热系数的差异。研究表明,复合材料的导热系数都是随氧化铝颗粒质量分数的增加而增大。当氧化铝颗粒的填充量小于10%时,复合材料的导热系数增加缓慢;当氧化铝颗粒的填充量在15%-45%之间时,复合材料的导热系数增加显著;而当氧化铝颗粒的填充量在45%-55%之间时,复合材料的导热系数的增加速率降低。并且,在相同含量时,当填充量较小时,氧化铝颗粒的粒径越大,导热系数越大;而当填充量较大时,氧化铝颗粒的粒径越小,导热系数越大。18811
关键词  氧化铝颗粒  环氧树脂  导热系数
 毕业设计说明书(毕业论文)外文摘要
Title  Electronics cooling technology studies
Abstract
Four different sizes of alumina particles were selected to fill in the epoxy resin, stirred well, to form the Al2O3/epoxy composite material. The effects on the thermal conductivity of composite materials when the same alumina particles of different content were studied. Also the differences in the thermal conductivity of composite materials when the different particles of same content were compared. The results showed that the thermal conductivity of composite materials was increased with the increase of alumina content. When the filling amount of alumina particles was less than 10%, the thermal conductivity of composite materials increased slowly; when the filling amount of alumina particles was between 15% -45%, the thermal conductivity of composite materials increased significantly; while when the filling amount of alumina particles was between 45% -55%, the rate of the increase of the thermal conductivity of composite materials was reduced. Meanwhile, for the same content, when the filling mass fraction was small, the larger the size of the alumina particle was, the greater the thermal conductivity would be; when the filling amount was large, the smaller the size of the alumina particle was, the greater the thermal conductivity would be.
Keywords  Alumina particles  Epoxy  Thermal conductivity
 目   次
1  绪论    1
1.1  引言    1
1.2  热界面材料的研究进展    2
1.3  本课题的研究内容    4
2  复合材料的制备    6
2.1  实验原材料    6
2.2  试样的制备    8
2.3  本章小结    10
3  复合材料导热性能测试    11
3.1  测量基本原理    11
3.2  热扩散系数的测量步骤    13
3.3  误差分析    14
3.4  本章小结    14
4  实验结果与讨论    16
结论    19
致谢    20
参考文献    21
 1  绪论
1.1  引言
随着电子器件向小型化、密集化方向发展,其集成程度和封装密度也迅速提高,电子器件产生的热量越来越多,其工作温度也越来越高,这严重影响着电子器件的使用寿命。现阶段,电子器件的散热主要还是通过热传导将自身产生的热量传递给散热器,但是,由于电子器件与散热器之间的接触表面粗糙不平整,常常存在很多空隙,使得接触面间实际的接触面积占总面积的比例很小。即使在两表面上施加很大的压力,也不能使接触面间完全紧密接触,此时间隙中存在的空气(空气的导热系数只有0.024W/(m﹒K))就会使电子器件的导热性能降低,阻碍热量的传递。所以,急需研究一种高效的散热方式来解决电子器件的散热问题[1-4]。 (责任编辑:qin)