1870年戴德金也得出同样结果(1888年发表)。
1878年弗洛宾尼乌斯(F。G。Frobenius,1849—1917)证明实数域上有限文可除代数只有实数、复数及实四元数的代数。
1881年小皮尔斯也独立得到证明。1958年用代数拓扑学方法证明,实数域上有限文可除代数,连非结合可除代数也算在内,只有1,2,4,8这四种已知文数。可见实数域及复数域具有独特的性质。
1.2 研究成果
关于域上线性结合代数的研究在19世纪末处于枚举阶段,1870年老皮尔斯(B。Peirce,1809—1880)发表《线性结合代数》,列举6文以下的线性结合代数162个。他还引进幂零元与幂等元等重要概念为后来的结构理论奠定基础。
1898年、嘉当(E。Cartan)在研究李代数的结构基础上,对于结合代数进行类似的研究,1900年,德国数学家摩林(T。Molien,1861—1941)征明,复数域上文数≥2的单结合代数都与复数域上适当阶数的矩阵代数同构。线性结合代数的结构定理是1907年由美国数学家魏德本(J。HM。Wedderburn,1882—1948)得出的:线性结合代数可以分解为幂零代数及半单代数,而半单代数又可以表示为单代数的直和。单代数可表为域上可除代数的矩阵代数。这样结合代数就归结为可除代数的研究。可除代数有着以下的结果。1905年魏德本证明:有限除环都是(交换)域,也即伽罗瓦域。当时除了伽罗瓦域及四元数之外,不知道有别的除环。20世纪虽然发现了一些新的除环,但除环的整个理论至今仍不完善。
从线性结合代数到结合环的过渡是阿廷完成的。1928年,阿廷首先引进极小条件环(即左、右理想满足降键条件的环,后称阿廷环),证明相应的结构定理。对于半单环的分类,雅可布孙(N。Jacobson,1910—)创立了他的结构理论。他认为对任意环均可引进根基的概念,而对阿廷环来说,根基就是一组真幂零元。对于非半单的阿廷环(主要出现于有限群的模表示中),如福洛宾尼乌斯代数及其推广也有许多独立的研究。而与阿廷环对应的是诺特环,对于有么无的环,秋月康夫(1902—1984)及霍普金斯(C。H opkins)证明阿廷环都是诺特环。对于诺特环,却长期没有相应的结构理论。一直到1958年英国数学家戈尔迪(A。W。Gold-ie)才取得突破,他证明任何诺特半素环都有一个阿廷半单的分式环,这才促进了新研究。与诺特环平行发展的是满足多项式等式的环。
环表示论及同调方法的应用对结合环理论有极大促进。
1.3 环论起源
环论的另一来源是代数数论及代数几何学及它们导致的交换环理论。1871年戴德金引进理想概念,开创了理想理论。环这个词首先见于希尔伯特的数论报告。代数几何学的研究促使希尔伯特证明多项式环的基定理。在本世纪初英国数学家腊斯克(E。Lasker,1868—1941)及麦考莱(F。S。Macaulay,1862—1937)对于多项式环得出分解定理。对于交换环的一般研究来源于E。诺特。她对一般诺特环进行公理化,证明准素分解定理从而奠定交换环论乃至抽象代数学基础,其后克鲁尔(W。Krull,1899—1971)给出系统的研究,他还引进了最值得注意的局部环。四十年代,薛华荔、柯恩(I。S。Cohen,1917—1955)及查瑞斯基(O。Zariski,1899—1986)对局部环论进行了系统的研究。
2 预备知识
2.1环
环(Ring)的定义类似于可交换群,只不过在原来“+”的基础上又增添另一种运算“•”(注意我们这里所说的 + 与 • 一般不是我们所熟知的四则运算加法和乘法)。在抽象代数中,研究环的分支为环论。
集合R和定义于其上的二元运算 + 和•,(R, +, •)构成一个环,若它们满足: 有序环与有序域+文献综述(2):http://www.youerw.com/shuxue/lunwen_20556.html