Therefore, the final mesh used for the production runs contains app. 3.57 million cells, which is a little finer than the initial medium mesh. It was designed to give a Y+ of maximum 75.5 and an average over the hull of 23.5.   After the verification and validation work, all the production runs for the static maneuvers to be used in the simulator model were made. The figures below show comparisons between CFD and EFD for all the computed cases, which cover static drift, static rudder and the combined static drift and rudder conditions. As mentioned earlier only static CFD data will be used as input for the simulator, as the dynamic computations are not finalized at the present time of writing.   Figure 8 to Figure 10 show the computed and measured non-dimensionalized forces and moments, X´, Y´and N´ as function of the rudder angle for three different speeds. For X´ it is seen to be close to 0 and negative for the highest speed, whereas it increases to larger positive values as the speed is reduced. This means that the propeller is over-thrusting at the lower speeds. However, based on the applied constant RPM approach, where the propeller RPMs are kept constant at service speed self-propulsion point, the propeller will deliver too much thrust at  the lower speeds giving the observed behavior. It is seen that the CFD computations generally predicts  X´ fairly well. The slightly larger deviations at large negative rudder angles are probably related  to the simplified propeller model not being able to capture the rudder propeller interaction.          ‐0.020‐0.0100.0000.0100.0200.0300.0400.0500.060‐40 ‐20 0 20 40X´Rudder angle [deg]CFD, Fr=0.260EFD, Fr=0.260CFD, Fr=0.201EFD, Fr=0.201CFD, Fr=0.156EFD, Fr=0.156Figure 8. Computed and measured non-dim X force for “static rudder”. ‐0.080‐0.060‐0.040‐0.0200.0000.0200.0400.0600.080‐40 ‐20 0 20 40Y´Rudder angle [deg]CFD, Fr=0.260EFD, Fr=0.260CFD, Fr=0.201EFD, Fr=0.201CFD, Fr=0.156EFD, Fr=0.156Figure 9. Computed and measured non-dim Y force for “static rudder”. For Y´ good agreement between EFD and CFD is also observed. Increased  rudder angle leads to increased Y-force which makes sense since the rudder lifts more at higher rudder angles. It is seen that the slope of the curves increases as the speed is reduced and the weak non-linearity occurs at the larger rudder angles.   N´ also shows increased slope of the curves as the speed is reduced and the weak non-linearity at the larger rudder angles. This behavior is expected as the yaw moment for the static rudder case to a large degree is caused by the rudder lift force. Again good agreement between EFD and CFD is observed.   Figure 11 to Figure 13 show the computed and measured non-dimensionalized forces and moments, X´,  Y´and  N´ as function of the drift angle for three different speeds. Again  X´ shows the effect of the constant RPM approach discussed above. Further, it can be noticed that the largest deviations occur at the lowest speed, which presumably is caused by the body-force propeller not being able to model the propeller flow in the case where the propeller loading is increasing. However, in spite of the difference, the CFD code generally predicts the force fairly well compared to the measurement, plus it is able to capture variation in X´ with the drift angle.    Figure 12 and Figure 13 show  Y´  and N´ for the three speeds. Compared to  the static rudder case it is here seen that the non-dimensionalization basically collapses the force and moment curves into one curve, which is often seen for the static drift force and moment. It is also seen that as the drift angle is increased the Y-force becomes non-linear. The yaw moment also shows non-linearity, but not as pronounced as the Y-force.  Further, it seems that the non-linearity in  N´ is more pronounced for lower speeds. Concerning the comparison between model test and CFD results, it appears the computation agrees well with the measurement.         The final set of results to be shown covers the static drift and rudder results. Figure 14 to Figure 16 show the forces and moments as function of the rudder angle for the two negative drift angles  β=-4° and  β=-12°, while Figure 17 to Figure 19 show the forces and moments as function of the rudder angle for two corresponding positive drift angles β=4° and β=12°.   
上一篇:船舶设计多维问题的元建模技术英文文献和中文翻译
下一篇:知识管理及其对隐性知识共享和感知学习英文文献和中文翻译

数控机床制造过程的碳排...

新的数控车床加工机制英文文献和中文翻译

抗震性能的无粘结后张法...

锈蚀钢筋的力学性能英文文献和中文翻译

未加筋的低屈服点钢板剪...

汽车内燃机连杆载荷和应...

审计的优化管理英文文献和中文翻译

老年2型糖尿病患者运动疗...

新課改下小學语文洧效阅...

安康汉江网讯

网络语言“XX体”研究

互联网教育”变革路径研究进展【7972字】

张洁小说《无字》中的女性意识

LiMn1-xFexPO4正极材料合成及充放电性能研究

ASP.net+sqlserver企业设备管理系统设计与开发

麦秸秆还田和沼液灌溉对...

我国风险投资的发展现状问题及对策分析