6. Conclusion
CFD simulations of solid suspension in stirred tanl‹ were per— formed. The predictions of four different drag models were com— pared. It was observed that turbulence dispersion force had negligible effect due to a low volume fraction of solids. Axial, radial and tangential velocities were compared at different axial loca- tions. It was observed that all four models could qualitatively cap— ture the flow in stiri-ed tank. The Wen and Yu and Gidaspow model showed biggest deviation from the experimental data while results from the modified Brucato drag model were in reasonable agree- ment for the liquid flow fields.
Maximum turbulence 1‹inetic energy was found in the impeller zone. The turbulence dampens with the increase in the solids con- centration and this effect was the most significant in this zone. For achieving homogeneity at low loading stirred tanks, a low impeller speed is adequate. However, high impeller speed is needed for high solid loading systems, as the energy dissipation is significant due to
more number of particles and high frequency of particle—particle, particle—wall and particle—blade collisions.
Divyamaan Wadnerkar, Ranjeet P. Utikar. Moses O. Tade, Vishnu K. Pareek
Department of Chemical Engineering, Curtin University, Perth 6102, Australia
摘要:矿物工业中通常用固液搅拌罐进行浓缩,浸润,吸附,流出物处理等操作。而对流体动力学(CFD)的计算则越来越多地被用于预测这些系统的流体动力学以及性能。考虑到固液相互作用对于是否能够准确预测这些系统的性能是至关重要,于是我们湍流和阻力模型的选择是十分谨慎的。在这项研究中,我们研究了阻力模型的影响。也使用了欧拉 - 欧拉多相模型来模拟搅拌罐中的固体悬浮液。同时我们也使用多参考框架(MRF)方法来模拟完全挡板的叶轮旋转。主要使用商业CFD求解器ANSYS Fluent 12.1对模型进行模拟。为了进行CFD模拟,我们将浓度设为1%和7%v / v,而叶轮速度则设为高于“刚刚悬浮的速度”。我们发现,与静止流体相比,高湍流的阻力系数增加了高达40倍。而我们主要通过改变阻力来应对高湍流强度下的阻力增加。改变的阻力是颗粒直径与Kolmogorov长度的比例,在模拟的情况下,在体积平均的基础上我们发现阻力大约为13。另外,我们发现改变的阻力定律可用于模拟搅拌罐中的低固体滞留量。我们对速度分布和固体分布的预测与文献数据是是基本一致的。本文研究并讨论了搅拌罐中的湍流动能,均匀性和云高度。固体的存在导致了湍流的衰减,并且在叶轮平面中造成了最大的偏差。另外云高度和均匀性会随着叶轮速度的增加而增加。这项研究有助于我们对搅拌罐中固体液体流动情况的了解。论文网
关键词: 固液悬浮液,搅拌罐,流体力学研究,拖动模型,同质性,云高度,CFD
1介绍
固液混合系统是化学和矿物工业中常见的操作系统之一。混合的主要目的是增加固相和液相之间的接触,从而促进物质的传递。在工业中,无论是在微观还是宏观层面都需要有效的混合,这样才能够发挥最好的性能。在微观层面,微混合的状态控制着化学和物理的传递反应。通过在宏观层面中充分混合可以达到促进微混合的目的。有许多因素,如刚悬浮速度,临界悬浮速度,固体分布等等,都影响着混合的性能。CFD已经被证明是分析这些因素对这些系统流量特性影响的有力工具[1-7]。而为了能使用CFD模型进行准确的预测,评估相间阻力则是必不可少的。在本研究中,我们通过文献[8]中提供的实验数据,分析了四种不同的阻力模型,并通过对低浓度固体的CFD模拟结果进行了分析来检验其有效性。同时,我们也讨论了湍流动能,悬浮质量和云高度。