6 Conclusions
1) Crushing process is the first steps of any operation that involve size reduce and separate ore from ore deposit。 The feed size of mill process and mineral processing has a very important effect on the selection of primary crusher。 The selection of suitable primary crusher from all of available primary crushers is a multi- criterion decision making。 Primary crusher selection via fuzzy TOPSIS method is proposed as the case study: Golegohar Iron Mine in Iran。 2) Capacity, feed size, product size, rock compressive strength, abrasion index and application of primary crusher for mobile plants are considered as criteria to determine the most suitable primary crusher。 As the result of this case study, the gyratory primary crusher with the highest closeness coefficient is determined as the best primary crusher。 References
[1] HWANG C L, YOON K。 Multiple attributes decision making methods and applications [M]。 Springer: Berlin Heidelberg, 1981:
128−140。
[2] BENITEZ J M, MARTIN J C, ROMAN C。 Using fuzzy number for measuring quality of service in the hotel industry [J]。 Tourism Management, 2007, 28(2): 544−555。
[3] WANG M Y, ELHAG T M S。 Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment [J]。 Expert Systems with Applications, 2006, 31(2): 309−319。
[4] ÖNÜT S, SONER S。 Transshipment site selection using the AHP and TOPSIS approaches under fuzzy environment [J]。 Waste Manage, 2008, 28: 1552−1559。
[5] GLIGORIC Z, BELJIC C, SIMEUNOVIC V。 Shaft location selection at deep multiple orebody deposit by using fuzzy TOPSIS method and network optimization [J]。 International Journal of Expert Systems with Applications, 2010, 37(2): 1408−1418。
[6] SAREMI M, MOUSAVI SF, SANAYEI A。 TQM consultant selection in SMEs with TOPSIS under fuzzy environment [J]。 Expert syst Appl, 2009, 36(2): 2742−2749。
[7] SUN C C, LIN G T R。 Using fuzzy TOPSIS method for evaluating the competitive advantages of shopping websites [J]。 Expert Syst Appl, 2009, 36: 11764−11771
[8] TORFI F, ZANJIRANI FARAHANI R, REZAPOUR S。 Fuzzy AHP to determine the relative weights of evaluation criteria and fuzzy TOPSIS to rank the alternatives [J]。 Applied Soft Computing, 2010, 10(2: 520−528。
[9] WANG J W, CHENG C H, CHENG H K。 Fuzzy hierarchical TOPSIS for supplier selection [J]。 Applied Soft Computing, 2009, 9: 377−386。
[10] ALAVI I, ALINEJAD-ROKNY H。 Comparison of fuzzy AHP and fuzzy TOPSIS methods for plant species selection (case study: Reclamation plan of Sungun Copper Mine; Iran) [J]。 Australian Journal of Basic and Applied Sciences, 2011, 5(12): 1104−1113。 [11] FOULADGAR M M, YAZDANI-CHAMZINI A, ZAVADSKAS E K。 An integrated model for prioritizing strategies of the Iranian mining sector [J]。 Technological and Economic Development of Economy, 2011, 17(3): 459−483。