In order to solve the problem of the geometrical synthesis, two mobile coordinate systems are introduced: XlOlYl is connected with the gear (the specified profile l); while XηOηYη is connected with the rack-cutter (the searched profile η)。 As the axis OηXη (the centrode line) of the rack-cutter rolls without sliding on the reference circle (of a radius r) of the gear, the displacement s of XηOηYη is synchronized with the rotation of XlOlYl at an angle φ, where s = rφ。 The place of the contact points of profiles l and η in the motionless plane, designed with K, A, etc。 is defined as perpendicular lines to the respective positions, in which the radial line

Table 2

Geometric parameters of involute spur gears with undercut teeth。

Parameters and dimensions Symbol Equation Type of undercutting

ρmax = z sinα 2。052 2。052 2。052

Minimum addendum modification  coefficient xmin xmin = ha −0,5z sin2α 0。649

λr  =[mδr  /(ra  − rb)]。100 12。74 % 0 % 4。76 %

λt    =(2mδt  /sb)。100 20。66 % 4。82 % 12。21 %

Fig。 10。 Undercutting — type I: z =6; x = −0。2 b xmin; δr = 0。125; δt = 0。147; α=20°; ha =1; c* = 0。25; ρ*= 0。38。

l takes, are dropped from the pitch point P。 In fact the equations of the curve η are derived by defining the place of the same contact points in the rectilinear moving coordinate system XηOηYη。

After executing the respective transformations and conversions, the parametric equations of the boundary fillet — type IIa are

finally written as follows:

Xη ¼ rðφ− cosφ sinφÞ ¼ XηðφÞ ;

2

Yη ¼ −r sin φ ¼ YηðφÞ ; ð

where φ is the angular parameter of the curve η, and r is the radius of the reference circle of the gear, calculated by the equation

r ¼ mz=2 : ð5Þ

The obtained curve η is pided by point А to two segments: AN and AM。 On Figs。 4 and 3a it is seen that only the segment AM appears as the real boundary rack-cutter fillet。 This means that when drawing the real curve η, the parameter φ gets an initial value φ= α (point A) and increases in the direction from point A to point M。

From the differential geometry it is known that the radius of a curvature ρ on each curve, specified as X = X(φ), Y = Y(φ), is defined from the equation

Y€ are the first and second derivatives to the parameter φ。

After differentiating Eq。 (4) and taking into consideration that

η  ¼ 2r sin φ;

X€ η  ¼ 4r sinφ cosφ;

Y_ η  ¼ −2r sinφ cosφ;

Y€ η  ¼ −2r cos2φ; ð7Þ

for the equation of the radius of the curvature of the curve η, the following formula is obtained

4r2 sin4φ þ 4r2 sin2φ cos2φ

上一篇:实用热力工程英文文献和中文翻译
下一篇:弧焊机器人传感器英文文献和中文翻译

基于对象的编程评估英文文献和中文翻译

U型弯曲部分工艺对中心式...

采用离散涡法对各船型黏...

燃木壁炉对室内空气质量...

模糊TOPSIS方法对初级破碎...

对象的创建和生命周期英文文献和中文翻译

JDBCResultSet对象英文文献和中文翻译

网络语言“XX体”研究

安康汉江网讯

我国风险投资的发展现状问题及对策分析

老年2型糖尿病患者运动疗...

新課改下小學语文洧效阅...

张洁小说《无字》中的女性意识

LiMn1-xFexPO4正极材料合成及充放电性能研究

ASP.net+sqlserver企业设备管理系统设计与开发

麦秸秆还田和沼液灌溉对...

互联网教育”变革路径研究进展【7972字】