农业信息网站服务质量评价体系研究
20世纪90年代后期的金农工程“实施以后各类涉农网站快速发展起来,并在服务三农“问题上取得一定的突破。但是,农业信息网站快速发展的同时,还存在一些问题,如由网站功能不全面。信息质量水平不高。网站内容缺乏行业特色等,网站的服务质量水平参差不齐。这些问论文网题的存在,不利于网站的长久发展,也不利于用户获得有效的农业相关信息服务。因此,从用户角度出发,探索农业信息网站服务质量的评价指标,为网站服务质量的提高指明方向是非常必要的。
一。农业信息网站服务质量评价研究现状
Richmond(1991)最早提出了评价网络信息资源的指标,包括内容。可信性。批判性的思考。版权所属。引用。连贯性。审查。可连续性。可比性以及范围这10个指标。此后,Stoker(1994)等提出了八项评价指标来评价网络信息资源,即信息的权威性。来源。范围以及论述。信息的文本格式。网站技术因素。价格以及信息的可用性。用户的信任。
杜?Z等人(2010)从农业信息网站的现状出发,构建了网站质量的评价指标体系,包括信息内容。网站操作。页面设计以及技术支持在内的4个一级指标。陈诚。吴华瑞。秦向阳(2014)利用因子分析以及多元回归分析的方法建立了由信息准确性。权威性。全面性。时效性。服务交互性以及网站专业性。检索便利性7个方面组成的质量评价维度,对农业信息服务质量进行评价。
可见,目前针对农业信息网站评价相关研究主要是采用定性的方法确定评价指标,缺乏将农业信息网站的建设与用户相结合起来进行的研究。因此,本文从用户感知的角度出发,探索影响农业信息网站服务质量的因素是很有必要的。
二。农业信息网站服务质量指标的初步确定
(一)农业信息网站服务质量指标的收集
为了更全面地了解农业信息网站服务质量的影响因素,要对网站的用户以及相关管理人员进行访谈。通过访谈发现,在农业信息网站的建设现状方面,主要有以下问题:信息分类不合理;网站页面设计与农业风格很不相符,有的过于追求华丽,有的却毫无特色;网站提供的咨询服务服务不到位;网站商家用户质量有待提升;商家信息资料不够完善;网站的注册流程比较繁琐等。通过访谈,共收集到了245条原始语句,但是,原始数据太过杂乱,所以要对原始数据进行筛选。提炼。表1是对收集到的部分原始数据进行的关键字提取。筛选以及编码汇总。
(二)农业信息网站服务质量指标的确定
通过对访谈记录的整理,得到了农业信息网站服务质量的指标,如表2所示。
三。实证分析
为了验证得到的农业信息网站服务质量的指标能否准确的反应各个组成维度,要设计调查问卷,收集数据进行信度检验以及探索性和验证性因子检验。
在进行数据收集时,考虑到调查对象的特殊性,本文采用多种数据收集方式:(1)根据用户在农业信息网站(如中国农业信息网。农博网。中国农业网。中国农村网等)上留下来的联系方式,利用QQ。e-mail将问卷在网上的填写地址发给他们,并通过电话的方式邀请其填写;(2)利用农业信息网站的论坛发布帖子,在帖子中粘贴问卷填写地址的链接,以方便用户在线填写。在线填写地址为http://www。sojump。com/jq/4272460。aspx。从2014年7月到2014年9月间,共回收问卷191份,其中有效问卷128份,有效率67。02百分号。
(一)指标的初步纯化
进行指标的初步纯化一般要考察Cronbach’sa值。修正后总相关系数(CITC)以及项已删除后的Cronbach’sa系数(CAID)这三项指标数据。指标总体的Cronbach’sa系数大于0。7,则指标的效度较好,但是当CITC值小于0。3且CAID系数值大于指标的整体Cronbach’sa系数值时,应该删除该指标问项。经过信度检验,发现农业信息网站服务质量指标的整体信度为0。860,比0。7大,说明该指标具有很高的内部一致性,但是由于指标SWNL4的CITC系数小于0。3,并且将其删除后,整体信度有所增加,所以将指标SWNL4删除。
(二)探索性因子分析
在进行指标信度检验删除了问项SWNL4之后,要对指标进行探索性因子分析以实现指标的进一步纯化。首先要计算指标的KMO值并对指标进行Bartlett球形检验,当KMO值超过0。7且球体检验的卡方值较大时,表示适合进行因子分析。本次检验计算得到的KMO值为0。815,超过了0。7,并且Bartlett球体检验的卡方值为1762。19,该值也较大,Sig值为0。000,明显小于0。001,所以表明收集到的数据进行探索性因子分析非常适合。
随后,对收集到的数据样本采用主成分分析方法进行因子分析,在因子提取过程中要对旋转后因子载荷小于0。5或者在两个因子上的因子载荷均大于0。5的问项进行删除,结果显示指标SXZL6因子载荷值小于0。5,所以将其删除,进而实现了指标的进一步纯化,如表3所示。
从因子分析的结果来看,22个测量指标收敛到6个维度,总的方差解释程度达到64。444百分号,因此,可以认为测量指标的结构效度得到了验证。
(三)验证性因子分析
为了确保指标的可靠性,要对指标进行验证性因子分析。一般运用χ2/df(卡方值和自由度的比值)。GFI(拟合优度指数)。NFI(规范拟合指数)。IFI(增加拟合指数)。CFI(比较拟合指数)和RMSEA(近似误差的均方根)这6个指标对模型的拟合程度进行评价,其中1≤χ2/df≤3表示模型拟合度良好,0。05
利用AMOS17。0对收集的数据样本进行验证性因子分析,以保留的22个变量问项作为观测变量,组成的6个维度作为潜变量,进行验证性因子分析,结果如表4所示。
表4显示,χ2/df指标值为1。612,小于要求的3,RMSEA的值为0。052,小于要求的0。1,而CFI。MFI指标值均大于0。90,且NFI。GFI指标值分别为0。849和0。852,虽然未达到0。9以上,但却已十分接近0。9。所以说各项检测指标基本符合模型拟合的标准,模型的拟合度较好。
因此,经过探索性因子分析和验证性因子分析,证实了6个维度22个选项组成的指标体系具有良好的信度和一定的结构效度。本研究创建的农业信息网站服务质量评价指标,能够为农业信息网站服务质量的评价提供指导。
四。结论
本文利用科学严谨的指标开发方法,构建了由信息质量。商务能力。有形性。易用性。保障性。互动服务6个维度22个指标组成的农业信息网站服务质量评价指标体系。农业信息网站的建设和运营过程中应当充分考虑到网站的信息质量。商务能力。有形性。易用性。保障性。互动服务这六个方面,首先要确保农业信息网站的易用性及有形性,然后,再次基础上要重点提升网站的信息质量。商务能力。保障性及互动服务性。
农业信息网站服务质量评价体系研究