本毕业设计以氮掺杂碳量子点活性炭载体为主要研究对象开展研究。通过 TEM、 XRD 以及 XPS 表征,我们可以发现,这种经过改性的活性炭与其负载的 Pt 纳米颗粒之 间的结合能要强于未改性的活性炭。得益于这种改变,负载于 NCQDs 掺杂活性炭 (NCB)上的 Pt 纳米颗粒的粒径要小于负载在普通 CB 表面的 Pt 纳米颗粒,提高了催化剂 ECSA 以此增强催化剂的电催化活性。其次,结合能的提高也有效地抑制了电催化氧化 甲醇过程中 Ostwald 熟化效应,提高了催化剂的稳定性。同时,电化学测试也表明,负 载于 NCB 上的 Pt 纳米颗粒可以更有效的吸附含氧物种,通过双功能催化机理极大地提 高了该催化剂的抗中毒能力,进一步的提高了该催化剂的稳定性。78033
综上,该毕业设计提出了一种新的燃料电池阳极催化剂的制备方式,并有效地提高 了催化剂的电催化活性,抗中毒性以及稳定性,为燃料电池的发展提供了一种新的策 略。
毕业论文关键词 氮掺杂量子点 活性炭 直接甲醇燃料电池 甲醇氧化
Title Preparation and Properties of Quantum Dots Modified Carbon-based Nanocomposites
Abstract This research is based on carbon black (CB) modified by N-doped quantum dots (NQD) employed as support for platinum nanoparticles (Pt NPs)。 The TEM, XRD and XPS tests demonstrated that the binding energy among NQD modified CB (NCB) surface and Pt NPs is significantly improved。 Benefited by this phenomenon, the size of Pt NPs well-dispersed on NCB are smaller than those supported on CB surface, meaning larger electrochemically active specific surface area (ECSA) values are provided, leading to enhanced catalytic activity for methanol electro-oxidation。 Furthermore, the improved binding energy efficiently suppressed the Ostwald ripening during the methanol electro-oxidation process, demonstrated the better stability。 Meanwhile, the electro-measurement implied the Pt NPs dispersed on NCB surface can adsorb OHad more effectively, leading to the better endurance of COad poisoned by bi- functional catalytic mechanism。
In conclusion, this research opens up a new avenue for the development of high-performance Pt-based nanoparticle catalysts with higher catalytic activity and better endurance of COad poisoned as well as better stability for anode of direct methanol fuel cells (DMFCs)。
Keywords N-doped carbon quantum dots, activated carbon, direct methanol fuel cell, anode catalyst
目录
1 引言 3
1。1 燃料电池 3
1。2 直接甲醇燃料电池 4
1。2。1 直接甲醇燃料电池工作原理 4
1。2。2 直接甲醇燃料电池阳极催化剂 5
1。2。3 直接甲醇燃料电池现存问题及解决方案 6
1。3 量子点改性碳基复合材料 8
1。3。1 碳量子点 8
1。3。2 碳量子点的制备方法及应用 8
1。3。3 氮掺杂碳量子点(N-doped carbon quantum dots,简称为 NCQDs)