F范数(Frobenius范数): 。
2.2  奇异值分解(Singular Value Decomposition,SVD)
2.2.1  奇异值分解
假设矩阵A是一个 的矩阵,并且rank(A)=r,U是 的矩阵,U的列是AAT的正交特征向量,V是 矩阵,V的列是ATA的正交特征向量,则存在以下奇异值分解:
 
其中AAT和ATA的特征值相同,都是 ,
 为 的对角矩阵,其中 ,其余位置为零,并且 ,记 , 即为矩阵A的奇异值。
上一篇:基于MaterialDesign的安卓快速开发平台的设计与应用
下一篇:基于TTL算法的网络隐蔽信道的设计与实现

基于Apriori算法的电影推荐

基于PageRank算法的网络数据分析

基于神经网络的验证码识别算法

基于网络的通用试题库系...

python基于决策树算法的球赛预测

基于消费者个性特征的化...

随机型存储模型應用研究【1393字】

AT89C52单片机的超声波测距...

国内外图像分割技术研究现状

神经外科重症监护病房患...

医院财务风险因素分析及管理措施【2367字】

志愿者活动的调查问卷表

承德市事业单位档案管理...

公寓空调设计任务书

C#学校科研管理系统的设计

10万元能开儿童乐园吗,我...

中国学术生态细节考察《...