Goal in this study are: 1) The overall pattern of mussels movement has carried on the further formal description and discussion;2) give mussels movement patterns and river landscape features;3) the overall pattern of swarm intelligence algorithms for pseudo equation and block diagram, and a unified framework of swarm intelligence computation pattern of a concept, the overall hierarchical framework model of swarm intelligence are given.In view of this, this paper studies the movement of mussels model and river landscape characteristics, gives the expression of random motion pattern in;Learning mussels group of the forming process of river pattern, and on this basis to random movement based on the MATLAB simulation model of mussels group of river bed.
Paper main research content includes:
(1) Artificial intelligence summary.
(2) The mussels landscape pattern formation, the swarm intelligence algorithm of optimal dynamic performance evaluation model research, under the guidance of basic index system of intelligent optimization, particle swarm optimization function optimization problems, for example, ensi to build a compreh ve evaluation algorithm to the overall optimization 
performance and overall optimization of dynamic group dynamic effectiveness evaluation model system, particle swarm optimization algorithm and the optimal value of the dynamic degree of polymerization, group dynamics, center of gravity of convergence degree dynamic colony persity and dynamic evaluation model of the instance simulation and validation.
(3) The application of swarm intelligence in the field of study.First introduce the swarm intelligence theory to study of university ranking system, based on particle swarm algorithm study and optimization research system of university ranking index;Then will swarm intelligence has been applied in the field of semiconductor manufacturing development research, based on the actual production data, to a solder ball back in the typical process of incomplete primary and secondary causes of swarm intelligence analysis, and for a class of simplified assembly job shop scheduling optimization problem, puts forward a dynamic scheduling method based on swarm intelligence.
Finally, the important content in the research of the whole piece of paper has carried on the profound summary, and river pattern formation of mussels group of random motion simulation, the goal and direction of future research work.
Key word: Nature, artificial intelligence, intelligent optimization, Brownian motion, mussel beds, swarm intelligence, MWO model
目录
第1章    绪论    1
1.1引言    1
1.2人工智能的发展与应用    2
1.3本文研究内容与创新点    7
1.4章节安排    8
第2章自然界群体智能的前景和研究应用    9
2.1自然界群体智能    9
2.2自然界群体智能的研究分支    10
2.3自然界群体智能运动的统一模型    12
2.3.1布朗运动模型    12
2.3.2高斯随机运动模型    15
2.3.3 Levy walk运动模型    18
2.3.4 Rayleigh diffusion运动模型    18
2.4自然界群体智能映射模型与计算实验    19
2.4.1自然界群体智能映射模型    19
2.4.2计算实验    20
2.5本章小结    21
第3章 贻贝群随机运动    22
3.1群体智能算法    22
3.2贻贝群随机运动的河床模式    22
3.2.1贻贝河床模式的自然特性    22
3.2.2贻贝群随机运动的河床模式形成    24
3.3实验设计    25
3.3.1实验设置    25
3.3.2实验结果    27
上一篇:Adomian多项式的计算及其应用
下一篇:分数阶超混沌系统的函数级联同步算法研究

随机数的产生及其应用

概率统计中的计算机随机模拟方法

二维连续型随机变量函数的密度计算技巧探讨

随机微分方程在数理金融中的应用

正规子群的判定正规子群的判定

MATLAB随机数的产生方法与随机模拟基础

商群的性质和应用

医院财务风险因素分析及管理措施【2367字】

志愿者活动的调查问卷表

承德市事业单位档案管理...

C#学校科研管理系统的设计

神经外科重症监护病房患...

中国学术生态细节考察《...

10万元能开儿童乐园吗,我...

AT89C52单片机的超声波测距...

国内外图像分割技术研究现状

公寓空调设计任务书