(3)等价标准形.
定义1.2[6] 阶梯形矩阵
(1)矩阵的零行在最下方;
(2)首非零元(非零行的第一个不为零的元素)的列 标随着行标的递增而严格增大).
定义1.3[8] 如果一个梯矩阵具有如下特征,则称之为行简化梯矩阵
(1)非零行的首非零元为1;
(2)非零行的首非零元所在的列的其余元均为零.
定义1.4[1] 设矩阵 的秩rankA=r,则存在 阶可逆矩阵 和 阶可逆阵 ,使   , 我们把 称为 的等价标准形.
    定义1.6[1] 所谓矩阵的秩就是指矩阵的行秩或列秩,行秩和列秩是相等的.
定义1.7[1] 设 ; 是两组文字,系数在数域 中的一组关系式为
 
称为 关于 的一个线性替换,或简称为线性替换,如果系数的行列式 那么以上线性替换就称为非退化线性替换.
上一篇:迭代法收敛判定的应用举例
下一篇:基于联系数的模糊多属性决策研究

浅谈中学数学函数最值问题的求解方法

基于决策树算法的篮球联赛预测

数形结合在中学数学中的...

浙江省工业企业发展的因子分析

中美小学数学课堂教学的比较

杭州历年中考三角形的题型分析

论数形结合在中学数学教育中的应用

AT89C52单片机的超声波测距...

承德市事业单位档案管理...

国内外图像分割技术研究现状

公寓空调设计任务书

志愿者活动的调查问卷表

中国学术生态细节考察《...

神经外科重症监护病房患...

10万元能开儿童乐园吗,我...

C#学校科研管理系统的设计

医院财务风险因素分析及管理措施【2367字】