毕业论文
计算机论文
经济论文
生物论文
数学论文
物理论文
机械论文
新闻传播论文
音乐舞蹈论文
法学论文
文学论文
材料科学
英语论文
日语论文
化学论文
自动化
管理论文
艺术论文
会计论文
土木工程
电子通信
食品科学
教学论文
医学论文
体育论文
论文下载
研究现状
任务书
开题报告
外文文献翻译
文献综述
范文
复数的发展简况+文献综述(4)
2.复数的发展
1637年,法国著名数学家笛卡尔(R.Descartes,1596—1650)在《几何学》一书中,相对于“Realle”(实的)第一次给出了虚数的名称“Imaginaies”(虚的). 这也是对复数形式上的正式命名,从此,虚数开始流传.
然而,在当时和以后一段相当长的时间内,许多数学家对于负数开平方后还是不是一个数持怀疑态度.例如,曾经对建立微积分上做过重大贡献的德国著名数学家莱不尼茨(1664—1716),竟在1702年宣称:虚数是“上帝精微与惊奇的避难所,是存在与不存在的两栖物”. 瑞士著名的数学家欧拉(1707—1783),虽然在1770年发表的代数著作中有许多地方用到了虚数,但是,在对于虚数的态度上他还是断然拒绝的,就像他形容的那样,“所有像 这种类型的式子都是虚幻而无根据的,虽然我们既不能完全否定它又不能完全肯定它,但是这类表示负数平方根的式子纯属虚构.”其实,就连给出“虚数”一词的笛卡尔本人都一度拒绝虚数存在的事实.所以那个时代想要肯定虚数的存在是非常不容易的,但是如果不承认虚数的存在,就好像恩格斯所指出的那样:“如果不准用 来运算,那未来数学,无论是初等数学或高等数学,将怎么办呢?”
从虚数踏入数学界地盘的那一刻开始,虚数就一直都是神秘莫测的,而更加让人不解的是,这种神秘感竟然一下子文持了整整两个世纪的时间.负数的平方根之所以不容易被人们所理解,关键是在于负数开平方后所得的新数在现实世界中有没有实际意义,在现实世界中能否找到它存在的空间形式及其数量的关系.
负数开平方究竟有没有实际意义,这一问题直到18世纪中叶后才得到初步认识.1730年,法国著名数学家棣莫弗(A.DeMoivre,1667—1754)出版了著作《关于级数和求积的综合分析》,棣莫弗公式
共4页:
上一页
1
2
3
4
下一页
上一篇:
矩阵的QR分解及程序设计
下一篇:
等价关系在大学数学中的应用
浅谈中学数学函数最值问题的求解方法
基于决策树算法的篮球联赛预测
数形结合在中学数学中的...
浙江省工业企业发展的因子分析
中美小学数学课堂教学的比较
杭州历年中考三角形的题型分析
论数形结合在中学数学教育中的应用
神经外科重症监护病房患...
承德市事业单位档案管理...
公寓空调设计任务书
国内外图像分割技术研究现状
C#学校科研管理系统的设计
医院财务风险因素分析及管理措施【2367字】
中国学术生态细节考察《...
10万元能开儿童乐园吗,我...
AT89C52单片机的超声波测距...
志愿者活动的调查问卷表