菜单
  

     
    图2.1   矩形窗和Hamming窗的时域波形
    矩形窗的定义:一个N点的矩形窗函数定义如下
    hamming窗的定义:一个N点的hamming窗函数定义如下
    这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发现(如图2.2):矩形窗的主瓣宽度小(4*pi/N),具有较高的频率分辨率,旁瓣峰值大(-13.3dB),会导致泄漏现象;汉明窗的主瓣宽8*pi/N,旁瓣峰值低(-42.7dB),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用汉明窗,在计算短时能量和平均幅度时通常用矩形窗。表2.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。
     图2.2  矩形窗和Hamming窗的频率响应
    窗函数    主瓣宽度    旁瓣峰值
    矩形窗    4*pi/N    13.3dB
    hamming    8*pi/N    42.7dB
    表2.1 矩形窗和hamming窗的主瓣宽度和旁瓣峰值
    2.1 短时能量
    由于语音信号的能量随时间变化,清音和浊音之间的能量差别相当显著。因此对语音的短时能量进行分析,可以描述语音的这种特征变化情况。定义短时能量为:
             (2-3)
    其中N为窗长。
    特殊地,当采用矩形窗时,可简化为:
                                      (2-4)        
    图2.3和图2.4给出了不同矩形窗和hamming窗长的短时能量函数,我们发现:在用短时能量反映语音信号的幅度变化时,不同的窗函数以及相应窗的长短均有影响。hamming窗的效果比矩形窗略好。但是,窗的长短影响起决定性作用。窗过大(N 很大),等效于很窄的低通滤波器,不能反映幅度En的变化;窗过小( N 很小),短时能量随时间急剧变化,不能得到平滑的能量函数。在11.025kHz左右的采样频率下,N 选为100~200比较合适。
    短时能量函数的应用:1)可用于区分清音段与浊音段。En值大对应于浊音段,En值小对应于清音段。2)可用于区分浊音变为清音或清音变为浊音的时间(根据En值的变化趋势)。3)对高信噪比的语音信号,也可以用来区分有无语音(语音信号的开始点或终止点)。无信号(或仅有噪声能量)时,En值很小,有语音信号时,能量显著增大。
  1. 上一篇:NFC协议物理层的软件实现+文献综述
  2. 下一篇:基于SEP3203和uClinux下的触摸屏驱动开发
  1. 基于多指标决策的通信网...

  2. 基于过期CSI的多天线中继选择系统设计与仿真

  3. SPCE061A基于DDS的正弦信号发生器设计+PCB电路图

  4. STM32基于WIFI通信的数字温湿度监测系统设计

  5. 基于粒子群算法的软件可靠性模型参数估计

  6. 基于串口通信的抢答器仿真设计+电路图+程序

  7. 基于云计算的物联网数据挖掘研究+程序

  8. 上市公司股权结构对经营绩效的影响研究

  9. 高警觉工作人群的元情绪...

  10. 浅析中国古代宗法制度

  11. C++最短路径算法研究和程序设计

  12. NFC协议物理层的软件实现+文献综述

  13. 现代简约美式风格在室内家装中的运用

  14. 中国传统元素在游戏角色...

  15. 巴金《激流三部曲》高觉新的悲剧命运

  16. g-C3N4光催化剂的制备和光催化性能研究

  17. 江苏省某高中学生体质现状的调查研究

  

About

优尔论文网手机版...

主页:http://www.youerw.com

关闭返回