摘要宽带频谱感知是认知无线电和认知雷达等应用的基础。然而,在宽带频谱感知系统中,由于奈奎斯特率非常高,传统的奈奎斯特采样是不切实际的。压缩采样(CS)理论利用信号的稀疏性,可以实现sub-Nyquist采样,从而大幅降低采样率。调制宽带转换器(MWC)是压缩感知领域中多带信号sub-Nyquist采样的新方法,它可实现低速率数据获得。然而,MWC结构复杂,实际硬件实现需要器件很多,而且不能直接获取信号的基带I和Q分量。本文研究将正交压缩采样应用于宽带频谱感知,发展基于正交压缩采样的宽带频谱感知(QuadWSS)系统。该结构直接在中频进行采样,并可获取信号基带I和Q分量,从而可简化系统设计。理论分析以及仿真证实了QuadWSS可有效实现宽带信号的低速率采样和重构。42458
毕业论文关键词 模数转化器(ADC) 压缩采样(CS) 无限测量向量(IMV) 多带采样sub-Nyquist采样 稀疏信号重构
毕业设计说明书外文摘要
Title Design of a Wideband Spectrum Sensing System Based on Quadrature Compressive Sampling
Abstract
Wideband spectrum sensing is the basis of the application of cognitive radio and cognitive radar. However, in the wideband spectrum sensing system, the Nyquist rate is so high that the traditional Nyquist sampling is impractical. Compressive sampling (CS) theory takes advantage of the sparsity of the signal to achieve sub-Nyquist sampling, which significantly reduces the sampling rate. Modulated wideband converter (MWC) is a new method of multiband signal sub-Nyquist sampling in the field of compressed sensing and can acquire the low rate data. However, the MWC’s structure is so complex that the actual hardware implementation needs a lot of devices, and it can not obtain the baseband I and Q components directly.
In this paper, we apply quadrature compressive sampling to wideband spectrum sensing, developing the wideband spectrum sensing (QuadWSS) system based on quadrature compressive sampling. The structure can sample signal directly in the intermediate frequency, and the baseband I and Q components can be obtained, so that the system design can be simplified. Theoretical analysis and simulation results show that QuadWSS can effectively achieve the low rate sampling and reconstruction of wideband signals.
Keywords Analog-to-digital conversion (ADC) compressive sampling (CS) infinite measurement vectors (IMV) multiband sampling sub-Nyquist sampling sparse signal reconstruction
目 次
1 绪论 … 1
1.1 宽带频谱感知 1
1.2 压缩感知和模信转换 … 2
1.3 本文主要内容和章节安排 … 6
2 基于正交压缩采样的宽带频谱感知系统(QuadWSS) 7
2.1 信号模型 7
2.2 QuadWSS系统原理 … 8
2.3 本章小结 12
3 频域分析与信号重构 13
3.1 频域分析 13
3.2 信号重构 18
3.3 本章小结 21
4 仿真分析 … 22
4.1 仿真参数设定 22
4.2 系统仿真结果 23
4.3 误差与相关参数分析 … 25
4.4 本章小结 28
结论 … 29
致谢 … 31
参考文献… 32
1 绪论
1.1 宽带频谱感知
射频(RF)技术能够利用很高的载频来解调窄带信号,而且人造无线电信号常常是稀疏的。也就是说,它们是由数量相对较小的、分布于一个宽带频谱范围的若干窄带发射成分组成。描述该类信号的一个简便方法是通过一个多带模型。一个多带信号的频率支撑集位于若干连续的区间中,而这些区间是分布于一个较宽的频谱范围中。图1.1描述了一个典型的通信应用——宽带接收机,其中的接收信号是遵从多带模型的。在图中,该发射信号具有三个载频不同的射频发射成分,该接收机信号模型是一个多带模型(信号频谱示意图画于底部)。在这样一个应用中,其基本的操作是把输入信号转换为数字信号,然后把某些或者全部的各发射成分进行低速率处理。最终,为了方便将来的转发,数字的结果再被变换回模拟域。