14

3  矩体乘法算法 17

3.1  矩体乘法算法一——递归法 17

3.2  矩体乘法算法二——矩阵乘法的衍化 18

4  特殊矩体 25

4.1  单位矩体 25

4.2  正交矩体 26

4.3  逆矩体 29

5  矩体应用 31

5.1  矩体的SVD 31

5.2  矩体SVD算法在视频图像处理中的应用 31

结论 36

致谢 38

参考文献 39

1  绪论

1.1  矩体课题概述[1]

1.1.1  课题缘起

    对于一幅灰度数字图像,可以用一个 的二维数组(array)对应表示。而对于一幅RGB彩色数字图像,可以用一个 的三维数组对应表示,其中第三维固定为3,即,每个彩色象素的三个颜色值保存在数组的第三维中。类似地,对于一个多帧RGB数字图像组成的图像序列,则可以用一个 的四维数组对应表示;图像帧的序号 ,在图像的长、宽、颜色深度之后,构成数组的第四维。

自然地,一个多维的离散信号,可以用一个 的多维数组对应表示。

数组的运算,符合四则运算(算术运算)规则,一般为同维数组对应元素间的四则运算。

矩阵(matrix),是一个二维的数组。矩阵之间进行普通的加减乘除四则运算,仍遵从一般的数组四则运算规则。但是,矩阵之所以称为“矩阵”而非“二维数组”,是因为矩阵的运算符合线性代数运算的规则,是矩阵整体间的运算。

准此,则可提出疑问,如何给“多维数组”赋予(除“四则运算”外的)“线性代数运算规则”?

笔者的导师曾在研究电视图像加扰时意识到,数字视频处理基本上是基于平面图像上的处理,而完整的彩色数字视频信号,则是由时间离散的彩色数字图像排列而成的四维数组。基于平面图像的数字视频处理,未能充分利用空间维之外的时间维信息。这种局限于平面图像的处理技术,不独数字视频处理为然,生物医学数字图像序列的处理,亦复如是。对这一问题的思考自然上升到更高层面:既然灰度数字图像的象素可推为矩阵元素的关系,那么由有序的数字图像排列而成的序贯图像,应该可以表示为一系列矩阵排列而成的“矩阵体”(简称“矩体”)。

笔者的导师考查代数、信号处理、图像处理等学科的文献后,未见这种能够充分满足视频分割、压缩、滤波、特征提取、模式识别等要求的理论记载,遂借题发挥,将上述思考抽绎成“如何用矩体表示多维(三维及以上)离散信号,如何对矩体进行代数运算”的问题。

1.1.2  课题的研究目标与意义

    课题的研究目标,是将二维的“矩阵”推广到多维,建立多维(三维及以上)离散信号的“矩体表示及运算”理论,为“多维离散信号”的表示及处理提供新的理论基础和方法技术,以期取得较之现有方法更好的分析、处理和识别结果,并为力学提供新的分析、计算工具。

本课题是在实际应用中提出的基础性问题,其研究意义在于:

上一篇:基于经验模式分解(EMD)的汉语普通话声调识别
下一篇:MSP430单片机无线传感器节点自定位系统设计

5d电子体系的晶体场效应与自旋轨道耦合

HFSS频率选择表面的设计仿真与分析

双频激光干涉仪信号处理...

Matlab时延网络控制系统的输出反馈镇定与仿真

MATLAB广义网络控制系统的稳定性分析与仿真

RFMON的网络嗅探器设计与实现

基于Verilog的4B/5B编解码器设计与仿真

LiMn1-xFexPO4正极材料合成及充放电性能研究

张洁小说《无字》中的女性意识

安康汉江网讯

我国风险投资的发展现状问题及对策分析

老年2型糖尿病患者运动疗...

ASP.net+sqlserver企业设备管理系统设计与开发

网络语言“XX体”研究

麦秸秆还田和沼液灌溉对...

互联网教育”变革路径研究进展【7972字】

新課改下小學语文洧效阅...