摘要基于时间相关单光子计数技术的激光雷达是当前激光探测领域的一个前沿性问题,论文在广泛资料调研的基础上,综述了光子计数激光雷达的工作原理,说明了其中涉及的基础理论:脉冲飞行时间测距法,工作在盖革模式下的雪崩光电二极管,光子计数理论等,并对其工作过程进行了理论建模和算法仿真。在此基础上,重点讨论了噪声及目标距离对探测率,虚警率,信噪比,测距准确度和精密度等工作性能的影响,并提出了缩短距离门改善探测率和虚警率以及衰减入射光改善信噪比的方法。结果表明,距离的增大会使测距准确度提升,精密度降低。在回波信噪比较高时,同时衰减回波信号和噪声信号,可以提高累计结果的信噪比。86083
毕业论文关键词 光子计数;激光雷达;信噪比;探测率;虚警率 ;测距精度
毕业设计说明书外文摘要
Title Photo Counting Technique and its Application in Laser Radar Range
Abstract Lidar based on time-correlated single photon counting technique is a cutting-edge issue of the current laser detection field, this paper based on extensive data research, summarized photon counting lidar works, explains the basic theory which involves: pulse flight time ranging method, working in Geiger mode avalanche photodiode, photon counting theory, and theoretical modeling and simulation algorithm and its work process。 On this basis, we discussed several factors affecting its performance, including detection rate, false alarm rate, SNR, ranging accuracy and precision and so on。 Focus on the influence of noise and the target distance to the work performance and proposed methods to improve the detection rate, false alarm rate and SNR。 The results showed that with the increase of noise and distance to the target, the detection rate and signal to noise ratio decreased, the false alarm rate to rise; the distance increases, ranging accuracy improved and accuracy is reduced。 In addition, shorten the range gate can improve detection rate and decline false alarm rate, by echo attenuation and noise signals simultaneously, we can clearly distinguish the noise and echo signal to improve the signal to noise ratio。
Keywords photon-counting; laser radar; detection probability; false-alarm probability; signal-to-noise ratio; ranging accuracy and precision
目 次
1绪论 1
1。1研究背景及意义 1
1。2国内外研究进展 1
1。3本文主要研究问题 2
2光子计数激光雷达工作原理 4
2。1脉冲飞行时间激光测距原理 4
2。2盖革模式雪崩光电二极管 4
2。3光子计数原理5
2。4光子计数激光雷达的基本结构 7
2。5小结 8
3 光子计数激光雷达工作过程的算法仿真 9
3。1光子计数激光雷达探测概率模型9
3。2仿真目标及流程图11
3。3仿真结果14
4光子计数激光雷达系统性能仿真分析17
4。1探测率仿真分析17
4。2虚警率仿真分析19
4。3信噪比仿真分析及改善途径21
4。4测距准确度及精密度仿真分析26
结论 28
致谢 29
参考文献30
1 绪论
1。1 研究背景及意义
激光雷达是在1960年世界上第一台激光器被发明之后不久产生的,但很快就代替了微波雷达被广泛应用到各个领域。激光雷达是激光技术和传统雷达的结合[1],其工作原理与微波雷达没有根本差别,激光束被作为探测脉冲信号发向目标,然后接收从目标反射回的信号,通过处理得到目标的距离,方位,形状等有关信息,因此可以用于目标跟踪、精确制导、地理测绘、自然灾害预测等多方面。