摘 要在集成电路中,关于Cu互连技术的研究一直都是行业关注的热点。自从Cu引线技术发明以来,凭借着其出色的性能,迅速取代Al引线,成为集成电路领域主流的技术。然而,Cu互连技术中Cu的扩散问题一直制约它进一步发展。为了解决这个问题,需要加入阻挡层材料。所以,扩散阻挡层材料的研究就成了Cu引线研究领域中的焦点。目前,大部分研究人员把重点放在了研究阻挡层材料高温失效的机理上,而忽视了外部条件,例如电场,对阻挡层扩散的影响。86470
本文通过磁控溅射技术在Si基片上依次镀上50nm的Ta和300nm的Cu,制成Cu/Ta/Si的互连结构。接着在650℃的条件下,依次改变外加电场的强度(1。6kV/cm-4。0kV/cm)进行退火实验。然后,分别采用X射线衍射分析、四探针测试仪、透射电子显微镜和X射线光电子能谱分析分别对样品的热学性能和电学性能进行定量分析。
毕业论文关键词:集成电路;Cu互连技术;扩散阻挡层;变化电场强度
Abstract In integrated circuit, the research on Cu interconnect technology has been paid more attention。 Due to the excellent performance of Cu interconnect, it replaced the Al, becoming the mainstream technology in the field of integrated circuit。 However, Cu diffusion has restricted its further development。 In order to solve this problem, it is needed to add a barrier layer material。 Therefore, the research on diffusion barrier materials has become the focus in the field of Cu interconnect。 At present, most researchers focused on the study of the mechanism of the failure of barrier materials during annealing, while ignoring the external conditions, such as the electric field, which also affected of the atom diffusion in Cu interconnect。
In this paper, the 50nm Ta and 300nm Cu were sequentially deposited on the Si substrate by magnetron sputtering technology。 The interconnection structure of Cu/Ta/Si was made。 Then, the samples were annealed at 650 °C with different applied electric field intensity (1。6kV/cm-4。0kV/cm)。 The thermal and electrical properties of the samples were analyzed by X ray diffraction, four probe tester, transmission electron microscope and X ray photoelectron spectroscopy。
Key words: IC; Cu wire; Diffusion barrier; Various electric field intensity。
目录
第一章 绪论 1
1。1引言 1
1。2 互连技术的发展 2
1。3 Cu互连技术的研究现状 3
1。3。1 扩散阻挡层的研究 4
1。3。2 Cu沉淀技术的研究 6
1。4 变电场对阻挡层的影响 7
1。5 实验目的和意义 8
第二章 实验方法 9
2。1实验样品制备 9
2。1。1磁控溅射制备Cu/Ta/Si的互连结构 9
2。1。2不同电场强度下真空退火 11
2。2 实验样品分析 11
2。2。1 X射线衍射分析 11
2。2。2 四探针测方块电阻 12
2。2。3透射电镜分析 13
2。2。4 EDX元素截面线扫描分析 14
2。2。5 X射线光电子能谱分析 14
第三章 变电场对Cu/Ta/Si互连结构界面扩散定量分析研究