摘要 近年来,基于碳的纳米粒子(NPS)如富勒烯和纳米管作为药物的载体已被广泛研究。富勒烯及其衍生物的分子通过膜的渗透过程对基于富勒烯的药物传递系统的利用是必不可少,但在细胞膜的渗透机制和动力学方面尚不清楚。此次研究,官能化富勒烯分子(约0。72纳米)穿过膜的渗透过程,通过粗粒化分子动力学模拟方法进行研究。我们的研究结果表明,在这样的纳米尺度的单官能富勒烯分子可以在微秒的时间尺度上渗透脂质膜。原始的C60分子聚集成几个小簇,C60OH15分子可以聚合成一个大集群渗透到脂质膜。C60及其衍生物渗透到膜后,所有的C60和C60OH15分子分解和分散在脂质膜中。C60和不同羟基取代的C60都能穿过脂质膜。C60一个接着一个地进入脂质膜中。C60OH15分子团聚进入脂质膜中。C60及其衍生物对磷脂膜的影响不大,可能意味着C60及其衍生物的生理毒性不大。88380
Abstract Carbon-based nanoparticles (NPs) such as fullerenes and nanotubes have been extensively studied for drug delivery in recent years。 The permeation process of fullerene and its derivative molecules through membrane is essential to the utilization of fullerene-based drug delivery system, but the mechanism and the dynamics of permeation through cell membrane are still unclear。 In this study, coarse-grained molecular dynamics simulations were performed to investigate the permeation process of functionalized fullerene molecules (ca。 0。72 nm) through the membrane。 Our results show that single functionalized fullerene molecule in such nanoscale could permeate the lipid membrane in micro-second time scale。 Pristine C60 molecules prefer to aggregate into several small clusters while C60OH15 molecules could aggregate into one big cluster to permeate through the lipid membrane。 After permeation of C60 or its derivatives into membrane, all C60 and C60OH15 molecules disaggregated and monodispersed in the lipid membrane。 C60 and its derivatives can penetrate the lipid membrane。 C60 one after another into the lipid membrane。 Aggregation of C60OH15 molecules into lipid membrane。 C60 and its derivatives had little effect on phospholipid membrane, It may imply that C60 and its derivatives have little physiological toxicity。
毕业论文关键词:纳米粒; 碳素材料; 细胞毒性; 分子动力学模拟
Keywords: Nanoparticles; Carbonmaterials; Cytotoxicity; Molecular dynamics simulation
目录
目录 4
1。 引言 5
2。 分子动力学简介 5
2。1 分子动力学源Y于Y优E尔Y论L文W网wwW.yOueRw.com 原文+QQ752018.766 拟计算的原理 6
2。2基本步骤 6
2。2。1 积分步程的选取 6
2。2。2 分子动力学计算流程 6
2。2。3 速度的初始化 7
2。2。4 分子动力学模拟的预处理 7
2。2。5 分子动力学计算的应用 7
3。 模拟细节 7
3。1 粗粒化模型 7
3。2 系统设置 8
3。2。1 单个富勒烯和它的衍生物 8
3。2。2 多个富勒烯和它的衍生物 8
3。3 分子动力学模拟