参考文献
[[1].C. Bauer, P. Jacques, A. Kalt, Photooxidation of an azo dye induced by visible light incident on the surface of TiO2. J. Photochem. Photobiol. A 140, 87–92 (2001)CrossRefGoogle Scholar
[2].B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, ZnS–Ag–ZnO as an excellent UV light active photocatalyst for the degradation of AV 7, AB 1, RR 120 and RY 84 dyes: synthesis, characterization and catalytic applications. Ind. Eng. Chem. Res. 53, 12953–12963 (2014)CrossRefGoogle Scholar
[3].B. Subash, B. Krishnakumar, R. Velmurugan, M. Swaminathan, Photodegradation of an azo dye with reusable SrF2–TiO2 under UV light and influence of operational parameters. Sep. Purif. Technol. 101, 98–106 (2012)CrossRefGoogle Scholar
[4].B. Subash, B. Krishanakumar, R. Velmurugan, M. Swaminathan, M. Shanthi, Synthesis of Ce co-loaded Ag–ZnO Photocatalyst with excellent performance for NBB dye degradation under natural sunlight illumination. Catal. Sci. Technol. (RSC) 2, 2319–2326 (2012)CrossRefGoogle Scholar
[5].C. Karunakaran, J. Jayabharathi, R. Sathishkumar, K. Jayamoorthy, Contrasting emission behaviour of phenanthroimidazole with rutile and anatase TiO2 nanoparticles. J. Lumin. 138, 235–241 (2013)CrossRefGoogle Scholar
[6].C. Karunakaran, J. Jayabharathi, K. Jayamoorthy, Fluorescence enhancing and quenching of TiO2 by benzimidazole. Sens. Actuators B Chem. 188, 207–211 (2013)CrossRefGoogle Scholar
[7].S. Kundu, A facile route for the formation of shape selective ZnO nanoarchitectures with superior photocatalytic activity. Colloids Surf. A Physiochem. Eng. Asp. 446, 199–212 (2014)CrossRefGoogle Scholar
[8].Y. Qin, X.D. Wang, Z.L. Wang, Microfiber-nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008)CrossRefGoogle Scholar
[9].S. Suresh, S. Karthikeyan, K. Jayamoorthy, Spectral investigations to the effect of bulk and nano ZnO on peanut plant leaves. Karbala Int. J. Mod. Sci. 2(2), 69–77 (2016)CrossRefGoogle Scholar
[10].A.A. Khodja, T. Sehili, J.F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions. J. Photochem. Photobiol. A 141, 231–236 (2001)CrossRefGoogle Scholar
[11].C. Ye, Y. Bando, G. Shen, D. Golberg, Thickness-dependent photocatalytic performance of ZnO nanoplatelets. J. Phys. Chem. B 110, 15146–15151 (2006)CrossRefGoogle Scholar
[12]B. Cao, W. Cai, From ZnO nanorods to nanoplates: chemical bath deposition growth and surface-related emissions. J. Phys. Chem. C 112, 680–685 (2007)CrossRefGoogle Scholar
[13].X. Qiu, L. Li, J. Zheng, J. Liu, X. Sun, G. Li, Origin of the enhanced photocatalytic activities of semiconductors: a case study of ZnO loaded with Mg2+. J. Phys. Chem. C 112, 12242–12248 (2008)CrossRefGoogle Scholar
[14].X.Q. Qiu, G.S. Li, X.F. Sun, L.P. Li, X.Z. Fu, Nanotechnology 19, 1–8 (2008)Google Scholar
[15].J.W.J. Hamilton, J.A. Byrne, P.S.M. Dunlop, D.D. Dionysiou, M. Pelaez, K. O’Shea, D. Synnott, S.C. Pillai, J. Phys. Chem. C 118(23), 12206–12215 (2014)CrossRefGoogle Scholar
[16].M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, P.S.M. Dunlop, J.W.J. Hamilton, J.A. Byrne, K. O’shea, M.H. Entezari, D.D. Dionysiou, Appl. Catal. B Environ. 125, 331–349 (2012)CrossRefGoogle Scholar
[17].N.A. Ramos-Delgado, L. Hinojosa-Reyes, I.L. Guzman-Mar, M.A. Gracia-Pinilla, A. Hernández-Ramírez, Catal. Today 209, 35–40 (2013)CrossRefGoogle Scholar
[18]P. Thangaraj, M.R. Viswanathan, K. Balasubramanian, S. Panneerselvam, H.D. Mansilla, M.A. Gracia-Pinilla, D. Contreras, J. Ruiz, J. Mater. Sci. Mater. Electron. 26, 8784–8792 (2015)CrossRefGoogle Scholar
[19].P. Fageria, S. Gangopadhyay, S. Pande, Synthesis of ZnO/Au and ZnO/Ag nanoparticles and their photocatalytic application using UV and visible light. RSC Adv. 4, 24962–24972 (2014)CrossRefGoogle Scholar 氧化锌文献综述和参考文献(2):http://www.youerw.com/wenxian/lunwen_80991.html