[20].P. Saravanan, K. Jayamoorthy, S.A. Kumar, Switch-On fluorescence and photo-induced electron transfer of 3-aminopropyltriethoxysilane to ZnO: dual applications in sensors and antibacterial activity. Sens. Actuators B Chem. 221, 784–791 (2015)CrossRefGoogle Scholar
[21].C. Karunakaran, J. Jayabharathi, K. Jayamoorthy, Benzimidazole: dramatic luminescence turn-on by ZnO nanocrystals. Measurement 46(10), 3883–3886 (2013)CrossRefGoogle Scholar
[22].B. Subash, B. Krishnakumar, M. Swaminathan, M. Shanthi, Highly active Zr co-loaded Ag-ZnO photocatalyst for the mineralization of Acid Black 1 under UV-A light illumination. Mater. Chem. Phys. 141, 114–120 (2013)CrossRefGoogle Scholar
[23].L. Li, W. Wang, H. Liu, X. Liu, Q. Song, S. Ren, First principles calculations of electronic band structure and optical properties of Cr-loaded ZnO. J. Phys. Chem. C 113, 8460–8464 (2009)CrossRefGoogle Scholar
[24]M. Ahmad, E. Ahmed, Y.W. Zhang, N.R. Khalid, J.F. Xu, M. Ullah, Z.L. Hong, Preparation of highly efficient Al-loaded ZnO photocatalyst by combustion synthesis. Curr. Appl. Phys. 13, 4697–4704 (2013)CrossRefGoogle Scholar
[25].J.B. Zhong, J.Z. Li, X.Y. He, J. Zeng, Y. Lu, W. Hu, K. Lin, Improved photocatalytic performance of Pd-loaded ZnO. Curr. Appl. Phys. 12, 998–1001 (2012)CrossRefGoogle Scholar
[26] H.L. Zhou, Y.Q. Qu, T. Zeid, X.F. Duan, Towards highly efficient photocatalystsusing semiconductor nanoarchitectures, Energy Environ. Sci. 5 (2012)6732–6743.
[27] X.J. Zou, Y.Y. Dong, X.D. Zhang, Y.B. Cui, Synthesize and characterize ofAg3VO4/TiO2 nanorods photocatalysts and its photocatalytic activity undervisible light irradiation, Appl. Surf. Sci. 366 (2016) 173–180.
[28] Q.L. Huang, Q.T. Zhang, S.S. Yuan, Y.C. Zhang, M. Zhang, One-pot facilesynthesis of branched Ag-ZnO heterojunction nanostructure as highlyefficient photocatalytic catalyst, Appl. Surf. Sci. 353 (2015) 949–957.
[29] T. Tachikawa, S. Yamashita, T. Majima, Evidence for crystal-face-dependentTiO2 photocatalysis from single-molecule imaging and kinetic analysis, J. Am.Chem. Soc. 133 (2011) 7197–7204.
[30] S. Girish Kumar, K.S.R. Koteswara Rao, Tungsten-based nanomaterials (WO3 &Bi2WO6): Modifications related to charge carrier transfer mechanisms andphotocatalytic applications, Appl. Surf. Sci. 355 (2015), 939-957-958.
[31] J.W. Fu, S.W. Cao, J.G. Yu, Dual Z-scheme charge transfer in TiO2-Ag-Cu2Ocomposite for enhanced photocatalytic hydrogen generation, J. Materiomics 1(2015) 124–133.
[32] W.L. Yu, D.F. Xu, T.Y. Peng, Enhanced photocatalytic activity of g-C3N4 forselective CO2 reduction to CH3OH via facile coupling of ZnO: a directZ-scheme mechanism, J. Mater. Chem. A 3 (2015) 19936–19947.
[33] S.Q. Song, B. Cheng, N.S. Wu, A.Y. Meng, S.W. Cao, J.G. Yu, Structure effect of graphene on the photocatalytic performance of plasmonic Ag/Ag2CO3-rGO for photocatalytic elimination of pollutants, Appl. Catal. B 181 (2016) 71–78.
[34] Y.X. Wang, X.Y. Li, G. Lu, X. Quan, G.H. Chen, Highly oriented 1-D ZnO nanorod arrays on zinc foil: direct growth from substrate, optical properties and photocatalytic activities, J. Phys. Chem. C 112 (2008) 7332–7336.
[35] Y.X. Wang, X.Y. Li, G. Lu, G.H. Chen, Y.Y. Chen, Synthesis and photo-catalytic degradation property of nanostructured-ZnO with different morphology,Mater. Lett. 62 (2008) 2359–2362.
[36] Y.X. Wang, X.Y. Li, N. Wang, X. Quan, Y.Y. Chen, Controllable synthesis of ZnO nanoflowers and their morphology-dependent photocatalytic activities, Sep.Purif. Technol. 62 (2008) 727–732.
[37] F. Lu, W.P. Cai, Y.G. Zhang, ZnO hierarchical micro/nanoarchitectures:solvothermal synthesis and structurally enhanced photocatalytic performance, Adv. Funct. Mater. 18 (2008) 1047–1056.
[38] H.R. Liu, Y.C. Hu, Z.X. Zhang, X.G. Liu, H.S. Jia, B.S. Xu, Synthesis of spherical Ag/ZnO heterostructural composites with excellent photocatalytic activity under visible light and UV irradiation, Appl. Surf. Sci. 355 (2015) 644–652. 氧化锌文献综述和参考文献(3):http://www.youerw.com/wenxian/lunwen_80991.html